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EXECUTIVE SUMMARY 

The field of traffic accident analysis has long been dominated by traditional statistical analysis. 

With the recent advances in data collection, storage and archival methods, the size of accident 

datasets has grown significantly. This in turn has motivated research on applying data mining 

and Machine Learning algorithms, which are specifically designed to handle datasets with large 

dimensions, to traffic accident analysis. This project explores three specific applications of Data 

Mining and Machine Learning algorithms to traffic accident analysis, as briefly described below. 

 

The first application explores the potential for using a modularity-optimizing community 

detection algorithm and association rules learning algorithm, to identify important accident 

characteristics.  As a case study, the algorithms are applied to an accident dataset compiled for 

Interstate 190 in the Buffalo-Niagara metropolitan area.  Specifically, the community detection 

algorithm is used first to cluster the data in order to reduce the inherent heterogeneity, and then 

the association rule learning algorithm is applied to each cluster to discern meaningful patterns 

within each, particularly related to high accident frequency locations (hotspots) and incident 

clearance time.  To demonstrate the benefits of clustering, the association rule algorithm is also 

applied to the whole dataset (before clustering) and the results are compared to those discovered 

from the clusters.  The study results indicate that: (1) the community detection algorithm was 

quite effective in identifying clusters with discernible characteristics; (2) clustering helped in 

unveiling relationships and accident causative factors that remained hidden when the analysis 

was performed on the whole dataset; and (3) the association rule learning algorithm yielded 

useful insight into accident hotspots and incident clearance time along I-190.    

 

The second application focuses on the development of models for the real-time prediction of 

traffic accident risk.  The data required for the development of such models are usually complex, 

noisy, and even misleading.  This raises the question of how to select the most important 

explanatory variables to achieve an acceptable level of accuracy for real-time traffic accident risk 

prediction. To address this, the project proposes a novel Frequent Pattern tree (FP tree) based 

variable selection method. The method works by first identifying all the frequent patterns in the 

traffic accident dataset.  Next, for each frequent pattern, we introduce a new metric, herein 

referred to as the Relative Object Purity Ratio (ROPR).  The ROPR is then used to calculate the 

importance score of each explanatory variable which in turn can be used for ranking and 

selecting the variables that contribute most to explaining the accident patterns.  To demonstrate 

the advantages of the proposed variable selection method, the study develops two traffic accident 

risk prediction models, based on accident data collected on interstate highway I-64 in Virginia, 

namely a k-nearest neighbor model and a Bayesian network.  Prior to model development, two 

variable selection methods are utilized: (1) the FP tree based method proposed herein; and (2) the 

random forest method, a widely used variable selection method, which is used as the base case 

for comparison.  The results show that the FP tree based accident risk prediction models perform 

better than the random forest based models, regardless of the type of prediction models (i.e. k-

nearest neighbor or Bayesian network), the settings of their parameters, and the types of datasets 

used for model training and testing.  The best model found is a FP tree based Bayesian network 

model that can predict 61.11% of accidents while having a false alarm rate of 38.16%.  These 

results compare very favorably with other accident prediction models reported in the literature. 

 



The third application develops models for predicting incident duration, based on the M5P 

algorithm.  M5P builds a tree-based model, like the traditional classification and regression tree 

(CART) method, but with multiple linear regression models as its leaves. The problem with M5P 

for accident duration prediction, however, is that whereas linear regression assumes that the 

conditional distribution of accident durations is normally distributed, the distribution for a “time-

to-an-event” is almost certainly nonsymmetrical.  A Hazard-based Duration Model (HBDM) is a 

better choice for this kind of a “time-to-event” modeling scenario, and given this, HBDMs have 

been previously applied to analyze and predict traffic accidents duration. Previous research, 

however, has not yet applied HBDMs for accident duration prediction, in association with 

clustering or classification of the dataset to minimize data heterogeneity.  This project proposes 

a novel approach for accident duration prediction, which improves on the original M5P tree 

algorithm through the construction of a M5P-HBDM model. In that model, the leaves of the 

M5P tree model are HBDMs instead of linear regression models. Such a model offers the 

advantage of minimizing data heterogeneity through dataset classification, and avoids the need 

for the incorrect assumption of normality for traffic accident durations. The proposed model is 

then tested on two freeway accident datasets. For each dataset, the first 500 records were used to 

train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-

HBDM, and the remainder of data are used for testing.  The results show that the proposed M5P-

HBDM managed to identify more significant and meaningful variables than either M5P or 

HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error 

(MAPE).  

 

Key Words: Data mining; Complex Network Analysis; Frequent Pattern tree (FP tree); Fuzzy 

C-means clustering (FCM); Bayesian network; Random forest; M5P Tree; Hazard-based 

Duration Model. 
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INTRODUCTION 

Given the enormous societal cost of traffic accidents, the transportation community has 

consistently been interested in accident analysis methods to reveal patterns, identify causative 

factors, and suggest countermeasures. The field of traffic accident analysis, however, has for 

long been dominated by traditional statistical analysis methods which over the years have 

yielded invaluable insight and helped guide policy. With the recent advances in data collection, 

storage and archival methods, the size of accident datasets has grown significantly.  This in turn 

has motivated research into data mining and Machine Learning algorithms, which are 

specifically designed to handle datasets with large dimensions, for traffic accident analysis. 

 

This project explores three specific applications of Data Mining and Machine Learning 

algorithms to traffic accident analysis. The first application explores the potential for using a 

modularity-optimizing community detection algorithm and association rules learning algorithm, 

to identify important accident characteristics.  The second application proposes a novel Frequent 

Pattern tree (FP tree) based variable selection method, and then develops models for the real-

time prediction of traffic accident risk.  Finally, the third application proposes a novel approach 

to developing accident duration prediction models.  The approach improves on the original M5P 

tree algorithm through the construction of a M5P-Hazard-Based Duration Model (HBDM). 

 

Besides the Introduction and the Conclusions section, this report is divided into three major 

sections, each dedicated to discussing one of the three applications studied in this project, 

namely: (1) the application of Data Mining and Complex Network Algorithms for Traffic 

Accident Analysis; (2) the use of a novel variable selection method based on Frequent Pattern 

Tree for real-time traffic accident risk prediction; and (3) the development of a combined M5P 

Tree and Hazard-based Duration Model for predicting urban freeway traffic accident durations.   

It should be noted that the current report represents a compilation of the material previously 

published by the authors in the following papers, Lin et al. (2014); Lin et al. (2015) and Lin et al. 

(2016). 

 

DATA MINING AND COMPLEX NETWORK ALGORITHMS FOR TRAFFIC 

ACCIDENT ANALYSIS 

This section, which is based on Lin et al. (2014), is organized as follows. First, background 

information on clustering, complex networks analysis techniques, and on the methods used to 

extract the relationship between crash involvement and risk factors, is provided. The study’s 

methodology is then described including a description of: (1) how the modularity optimization 

algorithm for community detection was applied to cluster the data; (2) the association rule data 

mining method; and (3) the characteristics of the dataset used. The clustering results are then 

presented, followed by a description of the discovered association rules for: (1) identifying 

hotspots and their characteristics; and (2) understanding the factors affecting incident clearance 

time.  A discussion of the difference between the association rules derived from the whole data 

set and those derived from each cluster is also included.   
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BACKGROUND 

Clustering and Data Heterogeneity 

Several researchers have recently pointed out that heterogeneity inherent in traffic accident data 

often prevents the further exploration of these data (Savolainen et al., 2011; Depaire et al., 2008). 

To deal with the issue, random effects and random parameters models have been proposed for 

traffic accident data analysis (Karlaftis et al., 1998; Miaou et al., 2003). Such models capture the 

unobserved heterogeneity by using random error terms and allow each estimated parameter of 

the model to vary across each individual observation in the dataset (Lord & Mannering, 2010). 

Anastasopoulos and Mannering (2009), for example, demonstrated that random parameters 

model can account for the heterogeneity arising from a number of factors in accident records and 

other unobserved factors in their accident frequency study. However, random effects model and 

random parameters model may not be easily transferable, and are often difficult to estimate 

(Lord & Mannering, 2010). Clustering the traffic accident data is another way to minimize the 

heterogeneity problem. For example, Valent et al. (2002) found that “Sundays” and “holidays” 

arise as significant risk factors when the analysis was performed for clustered data.  Moreover, 

Mohamed et al. (2013) identified “bad visibility due to bad weather” as a factor that can increase 

the risk of fatal crashes in Montreal Canada, based on an analysis performed on a clustered 

dataset.  

 

In traffic accidents studies, the two most widely used clustering techniques are: (1) the latent 

class clustering (LCC); and (2) the K-means clustering method.  On one hand, LCC has the 

advantages of being able to provide statistical criteria for deciding the number of clusters, and to 

calculate the probabilities for the new data points to belonging to a given cluster (Depaire et al., 

2008; de Oña et al., 2013). On the other hand, LCC heavily relies on the assumption of local 

independence among traffic accident variables to reduce parametric complexity and computing 

time, and was found to sometimes reach the local rather than global maximum. As for K-means 

clustering, Anderson (2009) applied the method to classify accident hotspots into relatively 

homogenous types based on their environmental characteristics. In addition, Mohamed et al. 

(2013) reported that for the Montreal accident dataset the K-means clustering method appeared 

to do a better job compared to LCC which tended to classify 90% of the accidents into the first 

two clusters.  

 

Modularity Optimization Community Detection Method 

Recently, complex network analysis methods have been intensively used to understand the 

features of complex systems such as biological, social, technological and information networks. 

In the analysis, communities, also called clusters or modules, denote groups of system 

components that probably share common properties and/or play similar roles in graphs 

(Fortunato, 2010). For example, for a Facebook social network, communities represent people 

who share common interests, and therefore exploiting the affiliations of users to these 

communities provides an effective way to provide them with targeted recommendations and 

advertisements (Ferrara, 2012). For these methods to work, however, the problem needs to be 

formulated in the form of a network graph.   

 

The modularity optimization method is one of the most popular methods used for community 

detection in graph and network analysis (Fortunato, 2010). Its premise is that the network is 

divided the best when the modularity (i.e., the degree to which a system's components may be 
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divided) is maximized.  Due to the generality of the method, the concept of modularity 

optimization can be applied to traffic accident clustering, by representing each accident record as 

one node in the network (analogous to a person in a social network).   

 

Discerning Relationships between Crash Involvement and Risk/Causative Factors 

For traffic accidents analysis, many statistical, non-parametric and data mining methods have 

been previously used, with or without clustering, to identify hotspots and to extract relationships 

between crash involvement and risk factors. As for hotspots, various approaches have been used 

to define and detect hotspots (Anderson, 2009). Some studies defined hotspots (or black spots) as 

geographical locations with highly concentrated traffic accidents (Geurts, 2003: Xie & Yan, 

2008), while some others detected hotspots based on quantitative measures such as the number 

of accidents divided by the traffic flow rate per period of time (Gregoriades & Mouskos, 2013). 

Among those studies, Kernel Density Estimation has gained more and more popularity (KDE) 

(Anderson, 2009; Xie & Yan, 2008; Okabe et al., 2009; Bil et al., 2013) especially in conjunction 

with Geographic Information Systems (GIS).  In terms of statistical methods previously used to 

model other aspects of traffic accidents, examples include: (1) hazard-based duration models 

which have been applied to identify accident characteristics that affect clearance time (Alkaabi et 

al., 2011; Ghosh, 2010); (2) ordered probit models for estimating the likelihood of injury severity 

(Lee & Abdel-Aty, 2005); and (3) Bayesian networks for detecting the factors explaining rural 

highway accident severity (used in conjunction with LCC clustering in de Oña et al., 2013).  

Among data mining methods proposed for accident analysis, on the other hand, is the association 

rule method used for example in Geurts et al., 2003 and Xi et al., 2004. 

 

METHODOLOGY  

Suppose the accident dataset contains 𝑁 records, each of which contains information about a set 

of variables 𝐴 = {𝑐1, 𝑐2, … 𝑐𝑚, 𝑎1, 𝑎2, … 𝑎𝑛}. We divide those variables intro two groups: (1) the 

𝑐𝑙 variables,  1 ≤ 𝑙 ≤ 𝑚, which represents the causative factors behind the accident such as time 

of day, weather conditions, road geometric features (e.g. number of lanes), etc.; and (2) the 

accident attributes, 𝑎𝑘, 1 ≤ 𝑘 ≤ 𝑛, which represents the specific characteristics of a crash such 

as associated injuries, location, incident clearance time, etc. 

 

Clustering Analysis 

This study used the community detection algorithm, for the first time, to cluster the data and 

reduce heterogeneity.  The first step was to represent the data in the form of the network by 

treating each accident record as one vertex in the network (similar to a friend in a Facebook 

network). Then, the problem becomes to find out how these vertices are connected in the 

network. Because in this study the objective is to find out how causative factors contribute to the 

outcome (i.e. the accident characteristics), the grouping is based on the causative factors (i.e. the 

cl variables).  

 

According to the algorithm, two vertices (i.e. two accidents) 𝑖 and 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ≠ 𝑗 will be 

connected if the following condition is satisfied: 

 

∑ 𝒆𝒍 ≥ 𝒆𝒕𝒉𝟏≤𝒍≤𝒎 ,          Equation 1 
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Where 𝑒𝑙 = 1, if the values of the factor 𝑐𝑙 of 𝑖 and 𝑗 are the same, otherwise 𝑒𝑙 = 0, and 𝑒𝑡ℎ is 

the similarity threshold defined by the user (i.e. this counts how many attributes are similar). If 

the two vertices 𝑖 and 𝑗 are connected, an undirected edge is drawn between them, and the weight 

of the edge can be calculated as: 

 

𝑾𝒊𝒋 =
∑ 𝒆𝒍𝟏≤𝒍≤𝒎

𝒎
,         Equation 2 

  

Following the network formation, the community detection algorithm is applied to divide it into 

clusters so that each vertex belongs to only one cluster. The most popular quality function of a 

partition is the modularity of Newman and Girvan (22), which can be calculated as following: 

 

𝑸 =
𝟏

𝟐𝑻
∑ [𝑾𝒊𝒋 −

𝒇𝒊𝒇𝒋

𝟐𝑻
]𝜹(𝒐𝒊,𝒊,𝒋 𝒐𝒋),        Equation 3 

 

Where 𝑊𝑖𝑗 represents the weight of the edge between vertex 𝑖 and 𝑗; 𝑓𝑖 = ∑ 𝑊𝑖𝑗𝑗  is the 

summation of the weights for the edges attached to vertex 𝑖; 𝑜𝑖 is the index of community or 

cluster vertex 𝑖 is assigned to in a given iteration, and 𝛿(𝑜𝑖, 𝑜𝑗) = 1, if 𝑜𝑖 = 𝑜𝑗, otherwise 

𝛿(𝑜𝑖, 𝑜𝑗) = 0; and 𝑇 =
1

2
∑ 𝑊𝑖𝑗𝑖,𝑗 . As defined above, the modularity basically reflects the 

concentration of vertices within communities compared with random distribution of edges 

between all vertices regardless of communities. A positive modularity means that the weights of 

the edges within the communities exceed the weights expected on the basis of chance, and this is 

the main motivation behind maximizing modularity. However, because it is too difficult to 

enumerate and test all the ways to partition a graph, algorithms such as the one proposed by 

Blondel et al., 2008 for the fast unfolding of the communities are needed.  Blondel et al.’s 

algorithm was the one utilized in this study (Blondel et al., 2008; Arenas et al., 2007).  

 

 As compared to traditional clustering techniques such as LCC and K-means clustering, 

the community identification algorithm offers several advantages.  First, the network 

transformation and the modularity optimization method are intuitive and easy to implement. 

Second, when building the network, because the causative factors are compared one by one and 

because there is no distance measure involved, as is the case with other techniques such as K-

means, there is no need to normalize the data (which often introduces imprecision). Third, unlike 

the LCC method, the modularity optimization algorithm does not rely on the assumption of the 

independence among variables to decrease the complexity of computation; instead, it is 

extremely fast since the number of possible communities decreases drastically after a few 

iterations (Blondel et al., 2008). Fourth, the method provides a modularity based quality 

function, which can be used to measure the effect of clustering. Finally, the method, even for 

large dimensional datasets, requires the specification/calibration of only one parameter, the 

threshold 𝑒𝑡ℎ, as opposed to classical statistical analysis methods where the number of 

parameters may exponentially increase as the number of variables increases (Chen & Jovanis, 

2000). 

 

Association Rule Learning  

The concepts of association rules learning were firstly introduced by Agrawal et al., 1993. Given 

a traffic accident related variable set 𝐴 = {𝑐1, 𝑐2, … 𝑐𝑚, 𝑎1, 𝑎2, … 𝑎𝑛}, it can be transformed to a 
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set of binary attributes called items 𝐼 = {𝐼1𝑐, 𝐼2𝑐 , … 𝐼𝐿𝑐 , 𝐼1𝑎, 𝐼2𝑎, … 𝐼𝐾𝑎}, where 𝐼𝑙𝑐, 1 ≤ 𝑙 ≤ 𝐿 are 

the binary attributes associated with the causative factors, and 𝐼𝑘𝑎, 1 ≤ 𝑘 ≤ 𝐾 are the binary 

variables related to accident attributes (i.e. the outcome). For example, the factor “Season” can 

be represented by four binary attributes, i.e., “spring”, “summer”, “autumn”, and “winter”. Each 

of the 𝑁 accident records, referred to here as transactions T, has a unique transaction ID and is a 

subset of 𝐼. An association rule is an implication of the form, X Y , where 𝑋 and 𝑌 are sets of 

items in 𝐼, X I , Y I  and X Y  .The sets of items X and Y  are called the body and 

head of the rules, respectively. 

 

 At a very high level, generating the association rules involves two basic steps. The first is 

to generate the frequent item sets in the data. 𝑋 is called a frequent item set when its support, 

which refers to the frequency at which 𝑋 appeared in the 𝑁 transactions, is equal to or greater 

than the minimum support defined by user. 

 
𝒔𝒖𝒑𝒑{𝑿}

𝑵
≥ 𝝈,           Equation 4 

 Where 𝑠𝑢𝑝𝑝{𝑋} is the number of transactions in 𝑁 that contains item set 𝑋, and 𝜎 is the 

minimum support.  

 

 Now suppose item sets 𝑋 and 𝑋 ∪ 𝑌 are frequent item sets, the second step is to calculate 

the confidence of X Y .  This is based on the ratio of the number of transactions that contains 

𝑋 ∪ 𝑌 to transactions that only contains 𝑋. If the confidence is equal to or higher than the user-

defined minimum confidence, X Y is an association rule. 

 

{ }
( )

{ }

supp X Y
conf X Y

supp X
   ,       Equation 5 

 Where 휀 is the minimum confidence.  Methods are then available to distinguish between 

the trivial and non-trivial rules (Geurts et al., 2003). 

 

DATA PROCESSING 

The dataset used in this study included 999 traffic accidents observed at I-190 from 01/01/2008 

to 10/31/2012. I-190 runs 28.34 miles (45.61 km) from its intersection with I-90 near Buffalo, 

NY up north to Lewiston, NY via Niagara Falls. I-190 plays a critical role in the Buffalo-Niagara 

transportation network, especially in terms of connecting Western New York to Southern 

Ontario, Canada. Incidents and traffic flow are monitored by the Niagara International 

Transportation Technology Coalition (NITTEC), which serves as the region’s Traffic Operations 

Center (TOC). Incident details are recorded every day through detailed incident log forms, which 

formed the basis for compiling the dataset used in this study. TABLE 1 lists both the causative 

factors and accident attributes variables that were available in NITTEC’s incident logs, and were 

thought to be useful for analysis. After initial screening of the data, a total of 15 variables were 

selected (nine causative factors and six accident attributes) as shown in Table 1.  The variables 

that were excluded did not exhibit enough variation over the dataset compiled (i.e., more than 

95% of the records had the same value for the variable). 
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Table 1. Traffic Accident Variables in the I-190 Data 

 

Variables Values Included 

Causative Factors  
Season Spring (March, April, May); Summer (June, July, August); Autumn 

(September, October, November); Winter (December, January, February) 

Yes 

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); no  Yes 

Hour of the Day morning (7 AM-9 AM); early afternoon (10 AM-12 Noon); afternoon (1 

PM-3 PM); evening rush (4 PM-6 PM); evening (7 PM-9 PM); night (10 

PM-6 AM) 

Yes 

Wind Speed 0 mph (miles per hour); 10 mph; 20 mph; 30 mph Yes 

Weather Conditions clear; rain; snow Yes 

Direction  North; South Yes 

Lane Number on 

Main Road 

1; 2; 3 Yes 

Lane Number on 

Ramp 

0 (away from exit); 1; 2; Yes 

Ramp Type on ramp; off ramp; highway to highway on ramp; highway to highway off 

ramp;  

Yes 

Vehicle Type Car; Truck/Tractor Trailer; Motorcycle No 

Accident Attributes:  
Location – Exit 

Number 

Exit 1; …; Exit 25; Highway Yes 

Location relative to  

Road Configuration 

Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before 

the bridge; after the bridge 

Yes 

Number of Vehicles 

Involved 

1; 2; more than 2 Yes 

Clearance Time 0-15minutes; 16-30 minutes; 31-45 minutes; 46-60 minutes; 61-75 minutes; 

76-90 minutes; more than 90 minutes 

Yes 

Blocked Lane Index left lane at main road; middle lane at main road; right lane at main road; all 

lanes at main road; left lane at ramp; right lane at ramp; all lanes at ramp; 

Yes 

Blocked Lane 

Number 

one lane at main road; two lanes at main road; three lanes at main road; one 

lane at ramp; two lanes at ramp  

Yes 

Injury Yes; No No 

Roll Over Yes; No No 

Congestion Yes; No No 

 

RESULTS 

Community Detection 

The only parameter that needed to be calibrated was the similarity threshold 𝑒𝑡ℎ, and given that 

the number of causative variables used for the comparison was 9 (𝑚 = 9),  the range for that 

parameter was from 1 to 9.  Furthermore, because 𝑒𝑡ℎ determines the similarity criterion between 

two accident records, at least more than half of the variables should have the same values.  This 

further narrowed the range to between 5 and 8 (it also does not make sense to require all 9 

parameters to be similar).  Given this, we experimented with four possible values for eth: 5, 6, 7, 

and 8. This process was conducted with the help of the open visualization software Gephi 

(Bastian et al., 2014) and the resulting network characteristics are shown in Table 2. 
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Table 2. Network Clusters with Respect to the Similarity Threshold 

 

Resulting Network Characteristics 𝑒𝑡ℎ = 5 𝑒𝑡ℎ = 6 𝑒𝑡ℎ = 7 𝑒𝑡ℎ = 8 

Number of vertices 999 999 997 930 

Number of edges 180,480 83,945 27,552 5,705 

Number of clusters founded  3 5 8 33 

Maximum modularity 0.213 0.296 0.47 0.647 

 

Causative Factors and Their Probabilities in Each Cluster (%) 

 
Variable: Value 

(Environmental 

Feature) 

Cluster 

1 2 3 4 5 6 7 8 

Season: Winter 14 50 21 34 16 45 29 94 

Weekday: Yes 99 95 0 66 54 73 73 70 

Weekday: No 1 5 100 34 46 27 27 30 

Weather 

Conditions: Clear 

80 70 84 65 85 44 73 0 

Weather 

Conditions: Snow 

1 16 5 24 0 31 14 100 

Direction: South 99 0 60 55 100 88 0 98 

Direction: North 0 100 40 45 0 12 100 0 

Lane Number at 

Main Road: 3 
99 98 99 61 0 2 0 74 

Lane Number on 

Main Road: 2 

0 0 0 37 100 98 99 26 

Lane Number on 

Ramp: 1 

99 81 90 0 100 15 72 100 

Lane Number on 

Ramp: 2 

1 19 10 0 0 85 28 0 

Lane Number on 

Ramp: 0 

0 0 0 100 0 0 0 0 

 

 As can be seen from Table 2, with the increase in the value of the similarity threshold 

𝑒𝑡ℎ, the number of edges in the network decreases (since it becomes harder to find similar 

vertices to connect), and the number of clusters as well as the associated maximum modularity of 

the network increase. Since modularity represents the concentration of nodes within communities 

in comparison to the random distribution of edges among nodes regardless of communities, 

lower 𝑒𝑡ℎ makes the network more randomly connected. Therefore, it is better to choose larger 

𝑒𝑡ℎ. However, when 𝑒𝑡ℎ = 8, although the maximum modularity is 0.647, the number of clusters 

is as high as 33. Besides, because connection requirements are more demanding, only 930 out of 

the 999 vertices are connected in that network (the remaining accidents were not found to be 

similar to any other accident which defies the purpose behind clustering). Given this, 7 was 

selected as the value for 𝑒𝑡ℎ, resulting in a total of 8 clusters. Figure 1 shows the resulting traffic 

accident network and the clustering results.  
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Figure 1. Resulting traffic accidents network and community detection (𝒆𝒕𝒉 = 𝟕). 

 

 
 

 To identify the attributes of each cluster (in terms of describing a given accident type or 

condition), we followed the method used by Depaire et al. (2008), where the distributions of the 

variables in each cluster are analyzed to identify the dominant or skewed features (the cluster 

could then be named based on these features. For example, if 100% of traffic accidents in one 

cluster happen at non-weekdays, while the other clusters have low probabilities for that feature, 

we can refer to that cluster as the non-weekday accidents cluster). Table 2 shows the 

probabilities for each feature within the 8 clusters, where the dominant or skewed feature 

probabilities are underlined and highlighted.    

 

 The probabilities in Table 2 can clearly be used to characterize each cluster.  For 

example, the first three clusters are all most likely to occur on the highway sections with three 

lanes at main road (with the occurring probabilities of 99%, 98% and 99%, respectively). 

Moreover, Cluster 1 and 2 can be claimed as weekday accidents in the southbound and 

northbound directions of I-190, respectively, while Cluster 3 includes non-weekday accidents 

only.  All the Cluster 4 accidents (100%) occurred on highway sections away from exits, where 

the lane number on the ramp is 0. Clusters 5, 6 and 7 all involve accidents on roads with only 

two lanes.  However, Cluster 5 seems to have involved accidents close to a ramp with one lane, 

whereas for Cluster 6, the ramp had two lanes.  Moreover, Clusters 5 and 6 seem to involve 

accidents in the southbound direction, whereas accident s in Cluster 7 occurred in the northbound 

direction.  Finally, Cluster 8 appears to involve accidents happening during snowy conditions 

(100%).  Based on the results, the eight clusters can be described as shown in Table 3. 
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Table 3. Traffic Accident Types 
Cluster Traffic accident types Size (%) 

1 Traffic accidents on southbound sections with three lanes at main road on weekdays 17 

2 Traffic accidents on northbound sections with three lanes at main road on weekdays 10 

3 Traffic accidents on sections with three lanes at main road on non-weekdays 11 

4 Traffic accidents on sections away from exits 13 

5 Traffic accidents on southbound sections with two lanes at main road and 1 lane at ramp 9 

6 Traffic accidents on southbound sections with two lanes at main road and two lanes at 

ramp  

13 

7 Traffic accidents on northbound sections with two lanes at main road  22 

8 Traffic accidents on southbound sections with one lane at ramp in snowy days  5 

 

Association Rule Analysis to Identify Hotspots 

In this study, for the association rule analysis, a “hotspot” is defined as the place where the ratio 

of the number of accidents at that particular spot, to the number of accidents on the whole 

transportation system under consideration is greater than the minimum support 𝜎, under the 

conditions defined by the body of an association rule.  In order to identify accident hotspots and 

the characteristics of accidents that occur there, the association rule analysis algorithm was then 

run using the 9 causative factors as candidate variable for the body of each rule, and using the 

“Location-Exit Number” accident attribute as the head of each rule.  The minimum support 

parameter was set to 0.05, and the minimum confidence to 0.50.  The results are shown in Table 

4 which lists the rules that had the highest confidence for a given location, along with a few other 

rules that provide some insight for the study.  As can be seen, the analysis was performed twice: 

first, on the whole dataset without clustering, and then on each cluster.  The dominant or skewed 

features for each cluster, as determined from the previous analysis, are shown in bold.  Finally, 

the confidence level values shown in parentheses are those that result when the value of one 

causative factor is perturbed (e.g. for rule #5 in cluster 2, the confidence drops from 1.00 to 0.38, 

when the environmental condition changes from rain to clear). 

 

Table 4. Rules on Hotspots from the Whole Dataset and the Clusters 

Datasets ID Body Head Confidence 
Whole 

Dataset 

1 [direction: north]+[lane number at main road: 

2]+[ramp type: off ramp] 

[Exit 9: Peace Bridge] 0.67 

2 [lane number at main road: 2]+[lane number at 

ramp:1]+[ramp type: highway to highway off ramp] 

[Exit 11: route 198] 1 

3 [lane number at main road: 2]+[lane number at 

ramp: 2]+[ramp type: highway to highway off 

ramp] 

[Exit 16: I-290] 0.60 

Cluster1 

 

4 [Weekdays: yes]+[weather condition: 

clear]+[direction: south]+[lane number at main 

road: 3]+[lane number at ramp: 1]+[ramp type: 

highway to highway off ramp]  

[Exit 7 Skyway] 1 

Cluster2 

 

5 [weekdays: yes]+[hour: 4 PM-6 PM]+[weather 

condition: rain (clear)]+[direction: north]+[lane 

number at main road: 3]+[lane number at ramp: 

1] 

[Exit 8: Niagara 

Street] 

1 (0.38) 

6 ([season: Winter]+)[weekdays: yes]+ [direction: 

north]+[lane number at main road: 3]+[lane 

number at ramp: 2]+[ramp type: off ramp] 

[Exit 6: Elm/Oak 

Street] 

 

0.90 (1) 
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Cluster3 7 [weekdays: no]+[direction: north]+[lane number 

at main road: 3]+[lane number at ramp: 2]+[ramp 

type: off ramp]  

[Exit 6: Elm/Oak 

Street] 

0.89 

Cluster4 8 [season: winter]+[weekdays: yes]+[lane number at 

main road: 2]+[lane number at ramp: 0] 

Milepost 10-12 0.54 

Cluster5 9 [direction: south]+[lane number at main road: 

2]+[lane number at ramp: 1]+[ramp type: 

highway to highway off ramp]  

[Exit 11: Route 198] 1 

10 ([season: winter]+)[hour: 7 AM-9 AM]+[direction: 

south]+[lane number at main road: 2]+[lane 

number at ramp: 1]+[ramp type: off ramp] 

[Exit 17: South Grand 

Island Bridge] 

0.54(0.90) 

Cluster6 11 [weekdays: yes]+[hour: 4 PM-6 PM]+[direction: 

south]+[lane number at main road: 2]+[lane 

number at ramp: 2]+[ramp type: highway to 

highway off ramp] 

[Exit 16: I-290] 0.63 

12 [weekdays: yes]+[hour: 7 AM-9 AM]+[direction: 

north]+[lane number at main road: 2]+[lane 

number at ramp: 2]+[ramp type: highway to 

highway off ramp] 

[Exit 16: I-290] 1 

Cluster7 13 [weekdays: yes]+[hour: 4 PM-6 PM]+[direction: 

north]+[lane number at main road: 2]+[lane 

number at ramp: 2]+[ramp type: off ramp]  

[Exit 9: Peace Bridge] 1 

14 [hour: 4 PM-6 PM]+[weather condition: 

clear]+[direction: north]+[lane number at main 

road: 2]+[lane number at ramp: 2]+[ramp type: off 

ramp] 

[Exit 9: Peace 

Bridge]+[road 

structure: beyond the 

exit] 

0.52 

15 [direction: north]+[lane number at main road: 

2]+[lane number at ramp: 1]+[ramp type: highway 

to highway off ramp]  

[Exit 11: Route 198] 1 

Cluster8 16 [weekdays: yes]+[weather condition: 

snow]+[direction: south]+[lane number at main 

road: 3]+[lane number at ramp: 1]+[ramp type: 

highway to highway off ramp]  

[Exit 7: Skyway] 1 

17 [weather condition: snow]+[direction: 

south]+[lane number at main road: 3]+[lane 

number at ramp: 1]+[ramp type: highway to 

highway off ramp]  

[Exit 7: 

Skyway]+[road 

structure: before the 

exit] 

0.6 

18 [weekdays: yes]+[hour: 10 PM-6 AM]+([wind 

speed: 10])+[weather condition: 

snow]+[direction: south]+[lane number at main 

road: 2]+[lane number at ramp: 1]+[ramp type: 

off ramp] 

[Exit 9: Peace Bridge] 0.5 (0.75) 
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 From the analysis on the whole dataset, three association rules with the highest 

confidence, for the corresponding three hotspots (Exits 9, 11 and 16), are selected. One common 

feature in body parts of the three rules is there are two lanes at main road, and two out of the 

three rules contain highway to highway off ramp feature, which appear to be problematic areas 

with a high accident frequency (this is quite intuitive because of the limitation of capacity and 

the excessive weaving that takes place there).  As can be seen, the analysis on the non-clustered 

dataset yielded limited insight about the hotspots. 

   

 When the analysis was performed on the clusters, several more rules and causative 

factors are revealed.  Specifically, 15 association rules are revealed, along with eight hotspots. 

For the hotspots, only one is located away from exits, and the rest are all close to exits. 

Furthermore, these seven exits identified are spatially correlated with one another, and fall very 

neatly in two definite geographic clusters; the first is [Exit 6, Exit 7, Exit 8, Exit 9, and Exit 11] 

– note that there is no Exit 10 on I -190; and the second is [Exit 16 and Exit 17]. Through 

comparing and analyzing the rules describing the same hotspot, a few additional insights can be 

gained as below: 

 

 Firstly, for Exit 6, when comparing Rules 6 and Rule 7, it becomes clear that the problem 

is consistently in the north direction no matter if it is a weekday or a non-weekday. Secondly, for 

Exit 7, when comparing Rules 4 and Rule 16, we can see that Exit 7 is always a hotspot with 

(confidence level = 1) regardless of the weather condition (both clear and snow). Rule 17 shows 

that the segment before Exit 7 is a hotspot in south direction when it snows. Thirdly, for Exit 9, 

Rule 13 provides more specific conditions than Rule 1. According to the rule, Exit 9 is a hotspot 

with confidence level 1 in the north direction for the peak hour 4 PM-6 PM on weekdays. Rule 

14 shows that if it is the peak hour 4 PM-6 PM with clear weather, the segment beyond Exit 9 in 

north direction is also a hotspot. And Rule 18 shows that, in the south direction, Exit 9 may also 

be a hotspot when it is 10 PM-6 AM on weekdays with snow. Fourthly, for Exit 11, by checking 

Rule 9 and Rule 15, Exit 11 is always a hotspot with confidence 1 in both the north and 

southbound direction. This is consistent with the conclusion of Rule 2 on the whole dataset. 

Finally, for cluster 4 describing traffic accidents on highways away from exits, only one hotspot 

is found with a relatively low confidence 0.54, although it contains 13% of the total records. This 

seems to indicate that accidents along I-190 tend to happen close to exits more often.   

 

 Besides insight regarding hotspots, the associative rules shed additional light on the 

conditions under which accidents happen at those locations.  This additional insight is gained by 

considering the role of the variables in the “body” parts of the rules.  A few examples are 

described below. 

 

 Firstly, the variables “weekdays” and “hour of the day” appear to affect whether a 

location becomes a hotspot. Nine out of the 15 association rules generated from the clusters 

contain “[weekdays: yes]” in the body parts, and five of the nine rules contain “[hour: 7 AM-9 

AM]” or [hour: 4 PM-6 PM].” This reveals the effect of weekday peak hours on traffic accidents. 

Another convincing example comes from Rule 11 and Rule 12. Exit 16-I-290 is a hotspot when 

it is 7 AM-9 AM in the morning towards north direction, and Exit 16 is also a hotspot when it is 

4 PM-6 PM in the afternoon towards south direction. 
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 Secondly, the feature “[season: winter]” can increase the confidence in claiming a 

location as a hotspot. For example, Rule 6 in Cluster 2 shows that if it is in winter, the 

confidence for Exit 6 to be a hotspot on weekdays will increase from 0.90 to 1. Similarly, Rule 

10 in Cluster 5 shows that if it is 7 AM-9 AM on someday in winter, the confidence in claiming 

Exit 17 as a hotspot witness a large increase from 0.54 to 0.90. Besides that, the variable “wind 

speed” and “weather condition” are found to affect the confidence for some locations. Rule 18 

shows that Exit 9-Peace Bridge has a higher risk 0.75 than the previous 0.50 if the wind speed is 

10 miles per hour. Rule 5 shows that with the other features in the body part being the same, the 

“[weather condition: rain],” rather than “[weather condition: clear],” tend to make Exit 8 a 

hotspot with confidence level 1.  

 

Association Rule Analysis to Identify Factors Affecting Incident Clearance Time  

The association rule analysis was then repeated, this time using the accident attribute “incident 

clearance time” as the “head of the rules” to gain some insight into the factors affecting incident 

clearance time.  For clearance time analysis, the minimum support is set as 0.05, and the 

minimum confidence is lowered to 0.30 (experiments showed this set of rules to have lower 

confidence levels compared to the hotspot analysis).  The results are shown in Table 5. 

 

Table 5. Rules on Clearance Time from the Whole Dataset and the Clusters 

 
Datasets ID Body Head Confidence 

Whole 

Dataset 

1 [weekdays: yes]+[hour: 4 PM-6 PM] [Clearance 

time: 31-45 

minutes] 

0.32 

2 [season: winter]+[lane number at main road: 3] [Clearance 

time: 16-30 

minutes] 

0.34 

Cluster1 

 

3 [weekdays: yes]+[hour: 4 PM-6 PM]+[wind speed: 

10]+[direction: south]+[lane number at main road: 3] 

[Clearance 

time: 31-45 

minutes] 

0.35  

Cluster2 

  

4 [weekdays: yes]+[hour: 4 PM-6 PM]+[weather condition: 

clear]+[direction: north]+[lane number at main road: 

3]+[lane number at ramp: 1] +[ramp type: off ramp]+[road 

structure: at the exit] 

[Clearance 

time: 31-45 

minutes] 

0.58 

5 [weekdays: yes]+[weather condition: clear]+[Exit 8: 

Niagara Street]+[direction: north]+[lane number at main 

road: 3]  

[Clearance 

time: 31-45 

minutes] 

0.55 

6 [season: winter]+[weekdays: yes]+[weather condition: 

clear]+[direction: north]+[lane number at main road: 

3]+[lane number at ramp: 1] 

[Clearance 

time: 16-30 

minutes] 

0.30 

Cluster3 7 [season: autumn]+[weekdays: no]+[direction: north]+[lane 

number at main road: 3]+[lane number at ramp: 1]+[ramp 

type: off ramp] 

[Clearance 

time: 46-60 

minutes] 

0.60 

8 [weekdays: no]+[Exit 8: Niagara Street]+ [lane number at 

main road: 3]+[lane number at ramp: 1]+[ramp type: off 

ramp] 

[Clearance 

time: 46-60 

minutes]  

0.33  

Cluster4 9 [season: autumn]+[weekdays: yes]+[lane number at main 

road: 3]+[lane number at ramp: 0] 

[Clearance 

time: 46-60 

minutes] 

0.50 



 

13 
 

10 [season: winter]+[direction: south]+[lane number at main 

road: 3]+[lane number at ramp: 0] 

[Clearance 

time: 16-30 

minutes] 

0.47 

11 [weekdays: no]+[direction: south]+[lane number at main 

road: 3]+[lane number at ramp: 0] 

[Clearance 

time: 31-

45minutes] 

0.37 

12 [weekdays: yes]+[direction: south]+[lane number at main 

road: 3]+[lane number at ramp: 0] 

[Clearance 

time: 16-30 

minutes] 

0.41 

13 [weekdays: yes]+[direction: north]+[lane number at main 

road: 3]+[lane number at ramp: 0] 

[Clearance 

time: 31-

45minutes] 

0.31 

Cluster5 14 [weekdays: no]+[direction: south]+[lane number at main 

road: 2]+[lane number at ramp: 1]  

[Clearance 

time: 16-30 

minutes] 

0.31 

15 [weekdays: yes]+[direction: south]+[lane number at 

main road: 2]+[lane number at ramp: 1]  

[Clearance 

time: 31-

45minutes] 

0.32 

16 [weekdays: yes]+ [Exit 9: Peace Bridge]+[direction: 

south]+[lane number at main road: 2]+[lane number at 

ramp: 1]+[ramp type: off ramp]  

[Clearance 

time: 31-

45minutes] 

0.60 

Cluster6 17 [Exit 16: I-290]+[direction: south]+[lane number at 

main road: 2]+[lane number at ramp: 2]+[ramp type: 

highway to highway off ramp]+[road structure: at the exit]  

[Clearance 

time: 31-

45minutes] 

0.35 

18 [hour: 7 AM-9 AM]+[lane number at main road: 

2]+[lane number at ramp: 2]+[ramp type: highway to 

highway off ramp]  

[Clearance 

time: 46-60 

minutes] 

0.33 

Cluster7 19 [weekdays: yes]+[hour: 1 PM-3 PM]+[direction: 

north]+[lane number at main road: 2] 

[Clearance 

time: 0-

15minutes] 

0.52 

20 [weekdays: yes]+[Exit 9: Peace Bridge]+[direction: 

north]+[lane number at main road: 2]  

[Clearance 

time: 16-30 

minutes] 

0.31 

21 [weekdays: yes]+[hour: 4 PM-6 PM]+[direction: 

north]+[lane number at main road: 2] 

[Clearance 

time: 31-

45minutes] 

0.31 

22 [Exit 11: Route 198]+[direction: north]+[lane number at 

main road: 2] 

[Clearance 

time: 31-

45minutes] 

0.34 

23 [season: winter]+([weather condition: snow])+[direction: 

north]+[lane number at main road: 2] 

[Clearance 

time: 31-45 

minutes] 

0.34 (0.46) 

Cluster8 24 [season: winter]+[weather condition: snow]+[direction: 

south]+[lane number at main road: 3]+[lane number at 

ramp: 1]  

[Clearance 

time: 16-30 

minutes] 

0.52 

 

 As shown in Table 1, clearance time is divided into seven intervals, each 15 minutes 

long. When the analysis was performed for the whole dataset, two rules are shown: Rule 1 is 

associated with peak-hour 4 PM-6 PM on weekdays, and the clearance time of accidents is 

shown to be 31-45 minutes (with a confidence level of 0.32); Rule 2 is for winter, if accidents 

happen at sections with three lanes main road, the clearance time tend to be between 16-30 



 

14 
 

minutes (with confidence level of 0.32). As before, when the associate rule analysis is performed 

on the whole dataset, limited insight is gained.   

 

 For the clusters, 22 rules are selected; four have a clearance time of 46-60 minutes, 12 

have 31-45 minute clearance times, 5 have 16-30 minutes, while the remainder has 0-16 minutes 

clearance times. Some of the main observations are summarized below.  

 

 Firstly, with respect to the “Weekday” variable, its impact on the incident clearance time 

appears to be mixed.  For example, Rule 8 shows that on non-weekdays, accidents at Exit 8 have 

clearance time between 46 and 60 minutes with confidence 0.33. Also, according to Rule 11 and 

12, on the southbound sections with 3 lanes on the main road, accidents on non-weekdays tend to 

have a longer clearance time than accidents on weekdays. On the other hand, when comparing 

Rule 14 and 15, we can see that with other factors being the same, accidents on non-weekdays 

are more likely to have clearance time of 16-30 minutes, while those on weekdays tend to have 

longer clearance time of 31-45 minutes.  This indicates that there are other factors besides 

whether the accident is on a weekday or not that affects clearance time, but perhaps the dataset 

was not rich enough to reveal such factors. 

 

 Secondly, the variable “Hour of the Day” may have an impact on the clearance time of 

traffic accidents. Rules 3, 4 and 21, which correspond to a clearance time 31-45 minutes, all have 

the same feature “the peak hours 4 PM-6 PM” in their body parts; Rule 18 shows that at peak 

hours 7 AM-9 AM, accidents on sections with two lanes at main road and two lanes at highway 

to highway off ramp have a probability of 0.33 to experience 46-60 minutes. And Rule 19 which 

shows on weekdays at 1 PM-3 PM (i.e. off-peak) the clearance time of accidents on sections 

towards north with two lanes at main road tends to be short, 0-15 minutes with confidence equal 

to 0.52.  

 

 Thirdly, the feature “snow” appears to increase the likelihood of longer clearance time.  

According to Rule 23, in the winter for sections towards north with two lanes at main road, the 

confidence in the clearance time being 36-45 minutes (i.e. on the long side) is 0.34. During 

snowy condition, the confidence increases to 0.46. 

 

 Finally, the “direction” of the road may also affect the clearance time (because it could 

potentially impact the time needed to get to the incident scene). By comparing Rule 12 and Rule 

13, we can see that for sections with 3 lanes on the main road on weekdays, accidents in the 

north direction has clearance time of 31-45 minutes with confidence 0.31, while accidents in the 

south direction has a probability of 0.41 to have clearance time of 16-30 minutes.  Another 

similar example is for hotspot at Exit 9. Based on Rule 16 and Rule 20, on weekdays, the 

clearance time for accidents at Exit 9 in the southbound direction may be 31-45 minutes with a 

confidence level of 0.60, which is longer than 16-30 minutes at the same exit in the north 

direction (confidence of 0.31). 

 

CONCLUSIONS 

In this study, the modularity-optimizing community detection algorithm was used first to cluster 

accident data recorded for I-190 in the Buffalo-Niagara area.  Following this, the association 

rules learning algorithm was used to gain some insight into accident hotspots and incident 
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clearance times.  To demonstrate the benefits of clustering, the association rule algorithm was 

applied to both the whole dataset (before clustering) and then to the clusters and the results were 

compared.  The main findings are summarized as below:  

 

1) The community detection algorithm appears to do an excellent job in clustering the data into 

well-defined clusters;  

2) Clustering the data first before running the association rule learning algorithm appears to be a 

necessary step that can significantly improve the quality of the insight to be gained from the rules 

extracted.  Specifically, when the association rule algorithm was run on the whole dataset in this 

study, the insight gained was very limited compared to that gained from running the analysis on 

the clusters. 

 

3) The association rule learning algorithm has the potential to reveal interesting insight about the 

characteristics of accidents, where they tend to occur, and the factors that affect incident 

clearance time.  

 

For future research, the authors plan to test the community detection and association rule 

learning algorithms on larger and richer data sets, and to explore additional relationships between 

causative factors and accident attributes.  They also plan to apply some of the previously used 

statistical traffic accident techniques, in particular hazard-based duration models, to the analysis 

of the accident clearance time and to compare the results to those from the data mining 

techniques utilized herein. 
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A NOVEL VARIABLE SELECTION METHOD BASED ON FREQUENT PATTERN 

TREE FOR REAL-TIME TRAFFIC ACCIDENT RISK PREDICTION  

Traffic accidents cause a great deal of loss of lives and property. According to the accidents 

report of the United States Census Bureau, there were 10.8 million accidents and 35,900 persons 

killed in 2009 (US census bureau, 2013). To address this, many studies have been conducted to 

predict accident frequencies and analyze the characteristics of traffic accidents, including studies 

on hazardous location/hot spot identification (Lin et al., 2014), accident injury-severities analysis 

(Milton et al., 2008), and accident duration analysis (Zhan et al., 2011). 

 

With the development of intelligent transportation systems technologies, there currently exists a 

wealth of real-time traffic data collected from fixed-locations sensors, automatic vehicle 

identification systems and other sensing technologies. These data sources can be fused and 

analyzed to develop real-time management strategies and applications for the purpose of 

improving efficiency, safety, resiliency and reliability of transportation systems. Particularly in 

the area of transportation safety, researchers have started to develop real-time traffic accident 

risk prediction models that take advantage of complex and rapidly and continuously flowing data 

for predicting traffic accidents.  

 

New issues are emerging accompanying the new opportunities offered by real-time traffic data. 

One issue is that related to explanatory variable selection, a topic that has received increased 

attention in real-time traffic accident risk prediction. The wealth of real-time traffic data offer 

more explanatory variables that may contribute to explaining traffic accident risk and patterns. 

However, as has been widely recognized, “more is not always better”, particularly for accident 

prediction. Inclusion of a large number of explanatory variables may cause model overfitting 

(Sawalha and Sayed, 2006). In addition, it can cause application related issues such as long 

prediction running time and unreliable prediction results, particularly when a model is applied to 

new locations and larger data instances (Fernández et al., 2014).    

 

In terms of usage, as a preprocessing step before building any prediction models, variable 

selection can help researchers identify and extract meaningful information (patterns, structure, 

underlying relationships, etc.) from the data. Only a small representative subset of the original 

feature space of the data may be needed to interpret the results (Fernández et al., 2014).  

Real-time traffic accident risk prediction models can be broadly classified into two categories, 

namely statistical models and data mining/machine learning models. Statistical models, such as 

matched case-control logistic regression models (Abdel-Aty et al., 2004), binary logit models 

(Xu et al., 2013) and aggregate log-linear models (Lee et al., 2003), have been tested and used in 

the previous studies. Typical examples of the data mining/ machine learning modeling approach 

include k nearest neighbor models (Lv et al., 2009), neural networks (Abdel-Aty et al., 2008), 

Bayesian network models (Hossain and Muromachi, 2012) and support vector machines (Yu and 

Abdel-Aty, 2013). Those methods have been gaining more and more popularity in recent years.  

 

As previously mentioned, the variable selection problem has attracted attention in previous real-

time traffic accident risk prediction research. For statistical models, Sawalha and Sayed (2006) 

found that using less but statistically significant explanatory variables can avoid over-fitting and 

improve the reliability of a model. They suggested combining the t-statistics test and the 
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likelihood ratio based scaled deviance test, for selecting significant explanatory variables. 

Different procedures were suggested for Poisson regression and negative binomial regression 

respectively due to the additional complexity introduced to the scaled deviance test for negative 

binomial regression models. As for the data mining models, classification and regression tree 

(CART) has been used to perform variable selection (Yu and Abdel-Aty, 2013; Pande and 

Abdel-Aty, 2006). Another ensemble learning method for classification and regression, called 

random forest, has also been widely used to rank explanatory variables (Abdel-Aty et al., 2008; 

Ahmed and Abdel-Aty, 2012). Recently, a hybrid model random multinomial logit (RMNL), 

formed by combining the random forest and logit models, was applied to calculate traffic 

accidents variable importance (Hossain and Muromachi, 2012). 

 

Different from previous research, this study proposes a novel frequent pattern tree (FP tree) 

based variable selection method for real-time traffic accident risk prediction, using the data 

collected on interstate highway I-64 in Virginia as the case study.  A new algorithm was built to 

rank explanatory variables based on the “calculated variable importance score”. To verify the 

model performance, the study then develops two traffic accident risk prediction models, namely 

a k-nearest neighbor model and a Bayesian network model.  Prior to the model development, two 

variable selection methods are utilized: (1) the FP tree based method proposed by the present 

research; and (2) the baseline random forest tree based method. The results show that the models 

trained with the FP tree selected explanatory variables always outperformed the others.  To the 

best of the authors’ knowledge, this study is the first attempt toward applying the FP tree based 

models to traffic accident related research.  

 

This section is organized as below.  First, an introduction to the Frequent Pattern (FP) tree model 

and its variable importance score calculation algorithm is provided. Second, we describe the 

traffic accident datasets used for model training and testing.  Third, we describe and compare the 

FP tree and the random forest based variable selection methods, in terms of their variable 

importance ranking results. Fourth, based on the variables selected by the FP tree and the random 

forest methods respectively, two traffic accident risk predictions models are discussed and 

compared in terms of their prediction performance, namely the k-NN model and the Bayesian 

network model.  The section ends with a summary of the main conclusions of the work and 

suggestions for future research.  

 

MODEL METHODOLOGY 

This section discusses the FP-tree algorithm used in this study for explanatory variable selection.  

The algorithm consists of two steps: variable discretization and variable importance score 

calculation. For the former step, the fuzzy c-means clustering method is used to convert a 

continuous variable to a series of discrete categorical variables; for the latter, we propose the 

“Relative Object Purity Ratio (ROPR)” as an importance score for each explanatory variable. 

This section will also introduce the random forest method that is used as the bench-marking 

variable selection method.  Finally, the two methods used for accident risk prediction, namely 

the k-NN model and Bayesian network, are briefly introduced. 

 

Frequent-pattern tree (FP-tree) 

The Frequent pattern tree (FP-tree) algorithm was proposed by Han et al. (2004). It yields a 

compact representation of all relevant frequency information in a dataset. A brief introduction of 
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the FP-tree algorithm follows. Suppose 𝐼 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑚} be a set of items. Let 𝑇𝑁 be a set of 

transactions or records in a database DB, and each transaction Tran  is a set of items, . A 

pattern 𝑋 also contains a set of items, X I . 𝑋 is called a frequent pattern when its support, 

referring to the frequency at which 𝑋 appears in the 𝑇𝑁 transactions, is equal to or greater than 

the minimum support threshold,  . 

 

 
 supp X

TN
          Equation 6 

where,  is a threshold value defined by user. 

 

A FP-tree includes a root labeled as “null”. It also includes a set of item-prefix sub-trees as the 

children of the root. There are two important fields for each node in the item-prefix sub-trees: 

item name and count. Item name tells which item this node represents, and count records the 

number of transactions represented by the portion of the path reaching this node. 

 

 

  

null 

𝑖1,0: 𝑓1,0 

𝑖2,0: 𝑓2,0 

𝑖𝑛−𝑘+1,1: 𝑓𝑛−𝑘+1,1 

…
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Figure 2. Frequent pattern (FP) tree. 
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Figure 2 shows an example of a FP tree. Suppose there are TN transactions [𝑥1, 𝑥2, … , 𝑥𝑇𝑁] in 

database DB, each transaction contains the values of n explanatory variables 𝑉𝑒, 1 ≤ 𝑒 ≤ 𝑛, and 

one response variable 𝑉𝑟 which, in our case, denotes whether an accident occurs or not. The FP 

tree is then built on the TN transactions with 𝑛 explanatory variables, among which the 

continuous variables are first transformed to discrete variables by using the Fuzzy C-means 

clustering method (FCM) as will be discussed in a later section.  For more details about how the 

FP tree is constructed, the reader is referred to Lin et al. (2015). 

 

After the FP tree is constructed and the shared and exclusive nodes identified, the next step is to 

assign credits or scores to the discrete items in the exclusive nodes, given that these exclusive 

nodes differentiate the frequent patterns from one another. In this study, we propose a novel 

variable importance score calculation method based on the Relative Object Purity Ratio, as we 

describe later in this report.   

 

Figure 3 summarizes the different steps of the variable selection method. In that Figure, we 

distinguish between the novel aspects of the proposed method (highlighted in bold and italic), 

and those which we borrow from the previous work reported in the literature.  In our subsequent 

discussion, we focus on those novel aspects but we still briefly describe the other steps as well 

for the convenience of the reader.   

 

Figure 3. Flow chart of variable selection method based on FP tree 

 

Variable importance calculation:  

A novel FP tree based variable importance score calculation method is proposed to rank and 

select the significant explanatory variables for accident risk prediction.  The method proceeds as 

follows. 

 

Variable Discretization (Fuzzy 

C-means Clustering Method) 

Build FP-tree (Han et al., 2004) 

Find Shared Nodes and Exclusive 

Nodes in Frequent Patterns 

Calculate the Variable Importance 

Scores (Relative Object Purity Ratio) 
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1. For each frequent pattern 𝑝𝑞, calculate its object purity ratio 𝑟𝑞 (OPR). OPR refers to the 

proportion of records falling into this frequent pattern, where their response variable 𝑉𝑟 takes the 

object value 𝑜 (in this study the object value 𝑜 is set as 1 which indicates an accident 

occurrence). 𝑟𝑞 can thus be calculated as follows:  

 

 
,

( )q r

q

n q

num V o
r

f


         Equation 7 

where, 

( )q rnum V o  is the number of records in frequent pattern 𝑞 which have the response variables 𝑉𝑟 

as 𝑜; 

,n qf  is the number of records allocated to frequent pattern q.  

 

One issue associated with OPR is that its value is in reference to the proportion of records taking 

the object value in the whole dataset DB, which can thus lead to inconsistent variable ranking. In 

this context, it is the difference between the OPR value of a pattern and the average behavior of 

the entire data that actually distinguishes a pattern. Therefore, we propose the relative object 

purity ratio 𝑟𝑟𝑞 (ROPR) in this study, where, in its modified version, ROPR represents the 

absolute difference between the OPR and the proportion of records taking the object value in the 

whole dataset DB. 
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       Equation 8 

where, 

( )DB rnum V o  is the number of records with the response variables 𝑉𝑟 as the object value 𝑜.  

 

2. Given an observed record located in this frequent pattern, one intuitive thought is that the 

higher the ROPR is, the purer the frequent pattern is and the more likely the object response 

value will take place (i.e., in our case, that an accident will occur) or will not happen. Again, we 

assume that only the discrete items that are in the exclusive nodes play a role in differentiating 

one frequent pattern from the others. Therefore, the importance score of an item is determined as 

follows: for each transaction Tran in DB, find its corresponding frequent pattern 𝑝𝑞 and exclusive 

nodes 𝐸𝑞; for each item in Tran , if it exists in 𝐸𝑞, add the ROPR to the item’s importance score 

𝐼𝑆𝑖, otherwise, keep 𝐼𝑆𝑖 unchanged.  

 

 
1 1

* * *i rq Tran q e

q Q Tran TN

IS r d d d
   

   , 1 i m      Equation 9    

where, 

1Trand  if item 𝑖 is in transaction Tran ; otherwise 0Trand  ; 

1qd   if 𝑝𝑞 is the frequent pattern of the corresponding transaction Tran ; otherwise 0qd  ; 

1ed   if item 𝑖 is in the exclusive node set 𝐸𝑞; otherwise 0ed  . 

 

3. After the importance score of each item is calculated, the remaining step is to calculate the 

importance score of a variable (𝐼𝑆𝑣).  
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  , 1 v n        Equation 10  

   

where, 

1vd  if item 𝑖 is one discrete value of variable v ; otherwise 0vd  . 

At last, the explanatory variables can be ranked based on the variable importance scores.  

 

Variable discretization for FP tree 

The FP-tree algorithm requires each transaction in the database to be a set of discrete items. 

However, in traffic accident risk prediction database, continuous variables such as traffic speed 

and traffic volume are quite common. In this study, the Fuzzy C-means clustering method (FCM) 

is used to transform the continuous variables to the discrete variables. FCM is an extension of the 

k-means methods in which each data point can be a member of multiple clusters with a 

membership value (soft assignment) (Jain, 2010). For details about how FCM was applied in this 

study, the reader is referred to (Lin et al. 2015) and to (Hung and Yang, 2001). 

 

Random forest 

Random forest is an ensemble learning method for classification and regression. It is widely used 

to rank the importance of variables in a natural way. Again, suppose there are TN records or 

transactions [𝑥1, 𝑥2, … , 𝑥𝑇𝑁] in database DB, each record includes one response variable 𝑉𝑟 and a 

set of explanatory variables 𝑉 = [𝑉1, … , 𝑉𝑛], a classification and regression tree (CART) 𝑓 for 

predicting 𝑉𝑟 can be built (Breiman et al., 1984) . The prediction error of 𝑓 based on a validation 

subset of DB is then defined as 
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where, 
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;  

DB  is the validation data subset; 

irV  is the observed value of the response variable of the 𝑖𝑡ℎ record.  

 

However, CART is known to be unstable as a small perturbation of the training sample may 

change the prediction results. To overcome this, Breiman introduced the random forest algorithm 

(Breiman, 2001): the trees are built over 𝑛𝑡𝑟𝑒𝑒 bootstrap samples 𝐷𝐵
1

, … , 𝐷𝐵
𝑛𝑡𝑟𝑒𝑒

 of the training 

data DB; for each tree, different from the CART algorithm, a subset of variables 𝑛𝑣𝑎𝑟 is 

randomly chosen for the splitting rule at each node; each tree is then fully grown until each node 

is pure. The trees are not pruned. The resulting learning rule is the aggregation of all the tree-

based estimators denoted by 𝑓1, … , 𝑓𝑛𝑡𝑟𝑒𝑒
 (Gregorutti et al., 2013). The class with the maximum 

number of votes among the 𝑛𝑡𝑟𝑒𝑒 trees in the forest is the predicted class of an observation.  

 

The Gini criterion is used to select the split with the lowest impurity at each node. As a useful 

byproduct of random forests, the Gini variable importance measure can be calculated once the 

forest is formed: at each split, the decrease in the Gini node impurity is recorded for variable 𝑉𝑖 

in [𝑉1, … , 𝑉𝑛], and the average of all the decreases in the Gini impurity in the forest where 𝑉𝑖 
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forms the split is its Gini variable importance. At last, the variables can be ranked according to 

the Gini variable importance measure (Archer and Kimes, 2008). Besides this, Breiman also 

proposed other measures like the permutation importance, the z-score and so on (Breiman, 

2001).  

k nearest neighbor (k-NN) 

k-NN is a classification method that decides the class of an object by finding its k-nearest 

neighbors (i.e. most similar) based on its explanatory variables in the training dataset. The 

Euclidean distance is typically used to assess similarity (Lin et al., 2013). When k nearest 

neighbors are found, the following equation (12)     1
,

| |

ˆ ˆ
i

i DB

irR f DB I f V V
DB 

  ,    

  Equation 11can be used to determine the class of the object (Murphy, 2012):  
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        Equation 12 

where, 

 

𝑁𝑘(𝑋, 𝐷) are the k nearest neighboring points to object 𝑋 in point set 𝐷;  
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; 

iy  is the response variable of neighboring point i; 

y  is the response variable of object 𝑋; 

c is the one of the possible classes.  

 

Bayesian network 

By the chain rule of probability, a joint distribution can be represented as follows: 

 

          1 2 1 3 2 1 4 1 2 31: 1: 1, , , ( | )VV Vp x p x p x |x p x |x x p x |x x x p x x       Equation 13  

where, 

V  is the number of variables; 

1:V  denotes the set {1,2,..., }V .  

 

Suppose all the variables have 𝐾 discrete states, we can create 𝑝(𝑥1) as a table of 𝑂(𝐾) numbers, 

representing a discrete distribution (there are actually only K-1 free parameters because of the 

sum-to-one constraint, but we write 𝑂(𝐾) for simplicity). Similarly, we can create 𝑝(𝑥2|𝑥1) as a 

table of 𝑂(𝐾2) numbers, and 𝑝(𝑥3|𝑥2, 𝑥1) as a table with 𝑂(𝐾3) numbers, and so on. These 

tables are called conditional probability tables (CPTs). As can be seen, the conditional 

distributions p(𝑥𝑡|𝑋1:𝑡−1) become harder to estimate as 𝑡 gets larger (Murphy, 2012).  

 

A Bayesian network is an efficient tool to overcome this problem. Specifically, a Bayesian 

network is a directed graphical model representing a joint distribution by making conditional 

independence (CI) assumptions. The nodes in the graph represent random variables, and the 

edges represent the CI assumptions.  More details can be found in Lin et al. (2015).   

 

MODELING DATASET  
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The dataset used in this study includes the traffic accident records collected on a segment on 

interstate highway I-64 in Norfolk, Virginia in 2005, as marked in Figure 4. 

 
 

W64-01 EB 

W64-01 WB 

W64-03 EB W64-06 WB 

W64-07 WB 

Figure 4. Part of I-64 in Norfolk, Virginia. 
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The accidents were stored in the Virginia Department of Transportation (VDOT’s) Archived 

Data Management System (ADMS). Besides that, this dataset also contains weather, visibility, 

traffic volume, speed, and occupancy information, with one minute resolution.  

 

However, this dataset by itself cannot be directly applied to predict real-time traffic risk directly. 

As a classification problem, the pre-crash condition and normal traffic condition have to be 

defined first (Hossain and Muromachi, 2012). Some studies defined the pre-crash condition as a 

time period starting right before an accident and extending up to 5 or 10 minutes (Oh et al., 2005; 

Zheng et al., 2010), while some studies defined it as a 5 minute time period starting from a close 

time point such as 4 or 5 minutes before the accident (Abdel-Aty et al., 2008; Hossain and 

Muromachi, 2012).  

 

In this study, as shown in Figure 5. we used two temporal settings to define the pre-crash 

condition: the first one is a 10-minute time period starting from 5 minute before the accident, and 

the other is in a 5-minute time period starting from 5 minute before the accident. The normal 

condition is defined as the same time period as the pre-crash condition, but taking place on the 

same day of the other weeks from two weeks earlier to two weeks later than the day of the week 

with an accident. It needs to note that a normal condition data point is excluded if there is an 

accident happening within one hour before or after the designated time (Hossain and Muromachi, 

2012).  

 

Time 

Traffic Accident 
10-minute 

5-minute 5-minute 

Figure 5. Temporal settings of pre-crash and normal traffic conditions 

 

After the pre-crash condition and normal traffic condition are defined, the relevant data can be 

extracted given the number and locations of traffic detectors in place. Most of the previous 

studies considered more than one detector during the extraction process, such as one upstream 

detector and one downstream detector (Abdel-Aty et al., 2008), and two upstream detectors, two 

downstream detectors and one detector covering the accident location (Hossain and Muromachi, 

2012). Due to the problem of missing data, we were forced to rely on only one detector, that is to 

say, the one reporting an accident. There are five such detectors, labeled W64-01 EB, W64-01 

WB, W64-03 EB, W64-06 WB and W64-07 WB, their approximate locations are marked in 

Figure 4. 

  

At last, two datasets were obtained, which differ from each other in terms of the time period used 

to define the pre-crash and normal traffic condition (the first DB has a time period of 10-minute 

long, and the second one is 5-minute long).  Eight explanatory variables were contained in the 

data, including: the mean of the weather condition (Meanwea) as defined below, the mean of 

visibility (Meanvis), the mean and standard deviation of the traffic volume (Meanvol and Stdvol, 



 

25 
 

unit: vehicle per hour), the mean and standard deviation of the traffic speed (Meanspe and Stdspe, 

unit: mph), and the mean and standard deviation of the occupancy (Meanocu and Stdocu). The 

accident response variable is defined as a binary variable with value 1 for the pre-crash situation 

and 0 for normal traffic. It is worth noting that the weather variable was a categorical variable 

originally with 26 possible different weather types.   

We used the numbers 0 to 25 to represent these different weather types that range from fine 

weather like “clear” to extreme inclement weather like “thunderstorm”. Although typically, the 

weather condition will not change significantly within a 5- or 10- minute period, we 

nevertheless, take the mean value of the weather over that period. The resulting variable, 

therefore, may theoretically assume a non-integer value and can be assumed as a continuous (and 

not discrete) variable.  The same applied for “visibility”, which is also a continuous variable 

ranging from 0 to 10 miles.  

 

After processing, the 5-minute accident dataset included 170 pre-crash records and 555 normal 

traffic records, and the 10- minute accident dataset included 174 pre-crash records and 569 

normal traffic records. Note that the 5-minute accident dataset has fewer records because of the 

higher probability of data missing for 5 minute period than the 10 minute period. For each 

dataset, 80% of the pre-crash records and normal traffic records were randomly chosen as the 

training dataset while the remaining 20% were taken as the test dataset. 

  

MODEL DEVELOPMENT AND RESULTS 

Variable importance calculation 

Two training datesets are generated through the random sampling with the 80% rate, including a 

5-minute training dataset with 136 pre-crash records and 444 normal traffic records and a 10-

minute training dataset with 139 pre-crash records and 455 normal traffic records. For each 

training dataset, FCM was first applied to transfer a continuous variable to a discrete cluster 

variable.   

 

Table 6. Clustering results for 5-minute and 10-minute accident training datasets 

 

datasets Variable  Cluster 1 low  Cluster 2 medium  Cluster 3 high 

5-minute  

training dataset 

Meanwea [0, 5] [6, 16] [17, 25] 

Meanvis [0.13, 4.25] [5, 8]  [8.8, 10] 

Meanvol [60, 564] [576, 1164] [1176, 1908] 

Meanocu [1, 8.2] [8.4, 27.6] [31.2, 66.4] 

Meanspe [0, 33.6] [34, 59.8] [60, 93] 

Stdvol [0, 112.24] [115.41, 245.19] [247.38, 642.58] 

Stdocu [0, 3.96] [4, 15.66] [26.62, 27.07] 

Stdspe [0, 4.15] [4.21, 11.73] [12.19, 33.16] 

10-minute  

training dataset 

Meanwea [0, 5] [6, 16] [17, 25] 

Meanvis [0.25, 4.8] [5, 8] [8.5, 10] 

Meanvol [60, 560] [564, 1152] [1170, 1890] 

Meanocu [1, 7.9] [8, 28] [29.7, 66.4] 

Meanspe [0, 31.6] [34.37, 59.8] [59.85, 94.5] 

Stdvol [0, 124.73] [124.9, 245.68] [248.51, 699.74] 

Stdocu [0, 4.17] [4.36, 16.06] [17.79, 31.10] 
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Stdspe [0, 4.63] [4.65, 13.48] [13.62, 31.78] 

 

The clustering results are shown in Table 6. Three clusters were generated for each continuous 

variable, representing: low, medium and high value ranges. The two numbers in each bracket 

denotes the lower bound and upper bound of a cluster. Through this process, the original eight 

continuous explanatory variables were transferred into 24 discrete variables (called items in the 

following analysis). The support of each item or the size of each cluster were obtained and sorted 

in a descending order as shown in Table 7:  

 

Table 7. Supports of items in 5-minute and 10-minute accident training datasets 

 

Index 5-minute training dataset 10-minute training dataset 

Item Support Item  Support 

1 Stdocu low 542 Stdocu low 554 

2 Meanwea low 435 Meanwea low 436 

3 Meanvis high 401 Meanvis high 405 

4 Meanocu low 385 Meanocu low 383 

5 Stdspe low 372 Stdspe low 373 

6 Meanspe medium 337 Meanspe medium 332 

7 Stdvol low 321 Stdvol low 327 

8 Meanvol medium 261 Meanvol medium 261 

9 Meanspe high 216 Meanspe high 231 

10 Meanvol low 170 Meanvol low 188 

11 Meanocu medium 169 Stdspe medium 188 

12 Stdvol medium 169 Stdvol medium 184 

13 Stdspe medium 169 Meanocu medium 178 

14 Meanvol high 149 Meanvol high 145 

15 Meanvis medium 125 Meanvis medium 132 

16 Meanwea medium 98 Meanwea medium 109 

17 Stdvol high 90 Stdvol high 83 

18 Meanvis low 54 Meanvis low 57 

19 Meanwea high 47 Meanwea high 49 

20 Stdspe high 39 Stdocu medium 34 

21 Stdocu medium 35 Meanocu high 33 

22 Meanspe low 27 Stdspe high 33 

23 Meanocu high 26 Meanspe low 31 

24 Stdocu high 3 Stdocu high 6 

 

When screening frequent items, we set the threshold value  in equation (1) to 0 so that all the 

items shown in Table 7 are considered. The rationale behind this is to prevent any information 

loss in the variable importance score calculation. Since the items have already been sorted in a 

support-based descending order, Table 7also provides the F-List to build the FP Tree. The reader 

is referred to Lin et al. (2015) for an example FP tree built from the training dataset. 
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With the FP Tree constructed, the variables’ importance scores are calculated using equation (3), 

(4) and (5). The results are shown in Table 8.  
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Table 8. Variable importance calculations results based on FP Tree and random forest 

methods 

 

Variables 5-minute training dataset 10-minute training dataset 

FP tree Random Forest FP tree Random Forest 

Meanvol 46 (1)* 27.31 (3) 48.6 (1) 27.51 (4) 

Stdvol 43.2 (2) 26.98 (4) 42.8 (2) 29.15 (2) 

Meanspe 16.6 (7) 28.56 (2) 20.8 (7) 29.02 (3) 

Stdspe 35.6 (4) 29 (1) 29 (6) 30.11 (1) 

Meanocu 21.6 (6) 25.99 (5) 35.8 (4) 24.89 (6) 

Stdocu 15.2 (8) 22.19 (6) 15 (8) 26.41 (5) 

Meanwea 40.2 (3) 8.79 (8) 37.6 (3) 9.88 (8) 

Meanvis 33.8 (5) 13.77 (7) 30.8 (5) 13.39 (7) 

Notes: * The first number is the variable importance score, and the number in the following 

parentheses is the ranking of variable (“1” means the most important, and “8” means the least 

important). 

 

We also calculated the variables importance scores based on random forest method (see Table 8), 

using the package “randomForest” within the statistics software R (Liaw and Wiener, 2002). For 

more details about calculating the importance scores and the random forest method, the reader is 

referred to Lin et al., 2015 and Efron and Tibshirani, 1997. 

 

With this, for the 5-minute training dataset, the sample size was set as 366, and for the 10-minute 

training dataset, the sample size was set as 375. The package “randomForest” produced the mean 

decrease of the Gini index for each variable as an output. As mentioned before, the mean 

decrease of the Gini index, measures the contribution of a variable to the homogeneity of the 

nodes and leaves in the random forest (Metagenomics Statistics, 2014). The higher the mean 

decrease of the associated Gini index is, the more important the variable is.  

 

Through the comparison of the variable importance scores generated from the FP tree and the 

Random forest, we can see that the two models produce different variable importance rankings. 

The FP tree models tended to rank traffic volume related variables, such as Meanvol and Stdvol as 

the top two most important variables while resulting in much lower scores for speed related 

statistics, particularly for Meanspe. In contrast, traffic speed related statistics variables were 

deemed slightly more important by the random forest. Nevertheless, the volume related variables 

were judged important by both of the methods (among the top four). As for the weather related 

variables, Meanwea was ranked as the third most important variable based on the FP method, 

while it was scored as the least important by the random forest method.  

 

k-NN 

This study tested the performance of k-NN for the 5-minute and 10-minute testing datasets. k 

was set as 2 and 3 separately, and each time k-NN was run for three scenarios: (1) using all the 

variables; (2) using all variables except for Meanspe and Stdocu which were ranked as the least 

important by the FP tree method; and (3) using all variables except for Meanwea and Meanvis 

that were ranked as the least important by random forest. The voting criterion of k-NN in this 

study is that once one of k nearest neighbors has the response variable equal to 1 (indicating the 
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occurrence of an accident), the predicted response of the observation is set as 1. The results can 

be seen in Figure 6.  

 

 

Figure 6a. Comparison of Sensitivity 

 

Figure 6b. Comparison of False Alarm Rate 

Figure 6. Performance of k-NN for different variable selection 

 

Note that there are two prediction performance measures used as shown in Figure 6a. and Figure 

6b.  These are: (1) the sensitivity, which measures the proportion of actual accidents that were 

accurately predicted as such; and (2) the false alarm rate that refers to the proportion of normal 

situations that were wrongly predicted as accidents. A good traffic accident risk prediction model 

should yield a high sensitivity and a low false alarm rate.  

 

The major findings are summarized below according to Fig.6. First of all, although k-NN doesn’t 

perform well in general, using the FP tree to pre-select the explanatory variables significantly 
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improved the prediction accuracy. In comparison to the “all variables case”, the FP tree based k-

NN model consistently produced higher prediction sensitivity values and lower false alarm rates, 

regardless of the testing dataset used. In contrast, there was generally no benefit from the random 

forest based variable selection, with the only exception of the case of k=3 with the 10-minute 

testing dataset where the variable selection with the random forest method generated a higher 

prediction sensitivity than the case using all the variables. This indicates the advantage of FP tree 

in sorting out important affecting factors and improving model prediction performance.  Second, 

regardless of the type of the testing datasets used, the comparison between the k-NN model with 

k=3 and the one with k=2 shows that adding one nearest neighbor will significantly increase the 

prediction sensitivity; however, as can be seen, this will also increase the false alarm rate. Lastly, 

the k-NN models work better for the 10-minute testing dataset than for the 5-minute testing 

dataset in terms of prediction sensitivity. However, the false alarm rates tend to be higher for the 

10-minute testing dataset as well. This indicates that the pre-crash time period may also affect 

model performance.  

 

Bayesian network  

Bayesian network models were also built to predict accident risk for comparison. As a crucial 

step to perform Bayesian network modeling, the continuous variables need to be discretized. 

How to transform a continuous variable to discrete category variables vastly depends on the 

objectives set by researchers (Hossain and Muromachi, 2012). Among the discretization 

techniques available in the literature, we selected the normalized equal distances (NED) method, 

using the software Bayesialab due to its promising performance (Bayesia, 2013). The values of 

each variable are first normalized based on the mean and standard deviation of the variable (Han 

et al., 2006). Then, the normalized values are split to the user-defined number of equal width 

discrete intervals (Kotsiantis and Kanellopoulos, 2006). For this research, we set the number of 

equal width discrete intervals as 3 and 4, respectively.  

 

We considered one of the most plausible Bayesian network structures, which just let the response 

variable be the child node of the possible explanatory variables (Hossain and Muromachi, 2012). 

Three scenarios, as before, were tested under the structure: (1) using all the variables; (2) using 

all except of Meanspe and Stdocu that are ranked as the least important by FP tree; and (3) using all 

except Meanwea and Meanvis that are ranked as the least important by random forest. The software 

Netica was used to learn the Bayesian network parameters (Netica tutorial, 2014).  For more 

details, the reader is referred to Lin et al., 2015.    

 

The performance of Bayesian networks with different NED numbers (in parentheses), and for the 

5-minute and 10-minute testing datasets are shown in Figure 7. 
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Figure 7a. Comparison of Sensitivity 

 

Figure 7b. Comparison of False Alarm Rate 

 

Figure 7c. Comparison of Overall Performance 

Figure 7. Bayesian network Performance with different variable selection strategies. 
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Several observations can be discerned from Figure 7. First, based on Figure 7a., which compares 

the sensitivity values, and Figure 7b., which compares the false alarm rate, the best Bayesian 

network model results in a sensitivity value as high as 61.11% and a false alarm rate as low as 

38.16%, when trained based on the 10-minute dataset with the NED number equal to 4. These 

results compare very favorably to those obtained by previous studies reported in the literature as 

shown in Table 9.  This is especially true given that the current study, because of missing data, 

had to rely on data collected from only a single detector (the one reporting the traffic accident), 

whereas most of the previous studies extracted the relevant variables from both upstream and 

downstream detectors relative to the crash location.  

 

As can be seen, for the previous studies the sensitivity values are usually around 60%, and the 

false alarm rate ranges between 20% and 50%. The best result from previous studies is that 

reported by Hossain and Muromachi (2012) with a sensitivity of 66% and a false alarm rate of 

20%.  In that study, however,  for each record in the database, information were extracted from 

two upstream detectors, two downstream detectors and the one nearest to the traffic accident;  we 

did not have the luxury of such data in the current study. 

 

Table 9. Comparison with the previous studies 
Authors More than 

One 

Detector   

Variable 

Selection Method 

Traffic Accident 

Prediction Method 

Sensitivity False 

Alarm Rate 

Abdel-Aty et al., 

(2004) 

Yes N/A Logistic Regression 69% N/A 

Pande and Abdel-Aty 

(2006) 

Yes Classification 

Tree 

Neural Network 57.14% 28.83% 

Abdel-Aty et al., 

(2008) 

Yes Random Forecast Neural Network 61% 21% 

Hossain and 

Muromachi (2012) 

Yes Random 

multinomial logit 

Bayesian Network 66% 20% 

Ahmed and Abdel-

Aty (2012) 

Yes Random Forecast Matched Case-Control 

Method 

68% 46% 

 

Secondly, the results, shown on Figure 7a. and Figure 7b., show that the number of NED could 

affect the performance of the Bayesian network. For the 5-minute dataset, the sensitivity and 

false alarm rate both decreased when the number of NED was set to 4 instead of 3. On the other 

hand, for 10-minute dataset, the sensitivity improved, but the false alarm rate remained almost 

the same when NED number is changed from 3 to 4, except for the situation using the variables 

based on random forest, for which the false alarm rate also increased.  

 

Third, for the majority of cases, the Bayesian network models using variables selected by FP tree 

perform better than the ones using the random forest selected variables. For example, for the 10-

minute dataset, when NED number is 4, although the sensitivity values of the two types of 

models are somewhat similar (around 61%), the false alarm rate of the random forest based 

Bayesian network model is much higher than its FP tree based counterpart.  For other cases, 

however (e.g., the models based on the 5-minute training dataset), it is hard to decisively 

conclude that the models based on FP tree performed better than those based on random forest 

because the sensitivity and false alarm rate of the former are both lower than those of the latter. 

Because of this, we introduced a third criterion shown in Fig. 8c., called the overall performance 
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to measures the ratio of correct predictions (no matter whether it is accident or a non-accident) in 

the whole testing dataset. Based on the overall performance criterion, we can easily see that the 

models based on variables selected by FP tree significantly outperform those based on all the 

variables or based on random forest for the 10-minute testing dataset.  For the 5-minute testing 

dataset, the models based on variable selected by FP tree have the same as or a little higher 

overall performance than the models using all variables. The models based on random forest 

variable selection in this case had the lowest overall performance.  

 

CONCLUSIONS AND FUTURE WORK  

In this part of the study, we proposed a novel variable selection algorithm based on FP tree for 

real-time traffic accident risk prediction. The importance score of each explanatory variable in 

the dataset is calculated and ranked through the calculation of the ROPR of the corresponding 

frequent patterns. This variable selection algorithm was tested on the Virginia traffic accident 

dataset collected in 2005 in comparison to the widely used random forest variable selection. 

Based on the variables selected by the two methods, two traffic accident risk prediction models, 

the k-NN and Bayesian network models, were developed and tested for three situations: using all 

variables, using the important variables selected by FP tree, and using the important variables 

selected by random forest. The major findings are summarized as below:  

 

1. Generally, the accident risk prediction results are quite acceptable when using the Bayesian 

network model with NED number equal to 4 and based on a 10-minute dataset. This is especially 

true for the case using variables selected by FP tree, where the sensitivity was as high as 61.11% 

and the false alarm rate was as low as 38.16%. Considering that only data from one detector 

were available in this study, these results are very promising. 

 

2. In terms of the time resolution to be used in compiling the datasets, no decisive conclusions 

can be made regarding whether a 5-minute or a 10-minute resolution would yield better 

performance.  For Bayesian network, the overall performances are improved by using the 10-

minute dataset except the cases with NED number set as 4, using all variables and FP tree based 

variables.  

 

3. The most important finding of this part of the study is that the accident risk prediction models 

based on FP tree variable selection outperform the models based on all variables and the ones 

based on random forest, regardless of the settings of the prediction models such as the selection 

of k for k-NN, the NED number selected for Bayesian network, and the pre-crash time period 

used in the datasets. Being insensitive to the selection of the models’ parameters is a good 

quality that the FP tree variable selection algorithm appears to possess. 

 

4. For the applications of the novel variable selection method and traffic accident risk prediction 

model, given that this is a classification problem in essence, both traffic accident records and 

normal traffic conditions extracted from the same segment of the road are needed to train and test 

the models. However, this study shows that records from different segments of the road can be 

put together in order to generate a bigger dataset. For example, the dataset in this study include 

the corresponding records reported by five detectors from different road segments of I-64.  
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As a novel algorithm, there are still a lot of details to be finalized in the future. For example, we 

may test the impact of clustering number in FCM on the FP tree variable importance calculation 

(in this study, we just set it as 3), and we may also try other variable discretization methods. 

Besides that, there are some other variable reduction/selection algorithms, such as stratified 

random forest (Ye, et al., 2013), and random projection (Fan, et al., 2013) that deserve to be 

explored. We will also test other accident risk prediction methods such as support vector 

machine (SVM) as our future work. 
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A COMBINED M5P TREE AND HAZARD-BASED DURATION MODEL FOR 

PREDICTING URBAN FREEWAY TRAFFIC ACCIDENT DURATIONS 

Traffic incidents account for more than 50% of motorist delays on freeways (Farradyne, 2000; 

Chin et al., 2004). To reduce the societal cost of such incidents, an efficient traffic incident 

management system (TIM) need be developed and deployed. The TIM process can be viewed as 

consisting of 5 phases (Zhan et al., 2011): (1) incident detection, which refers to the time interval 

from the occurrence of the incident to its detection; (2) incident verification that covers the 

period from the detection to the confirmation of the incident; (3) incident response spanning 

from the moment an incident is confirmed to the time when the first responder arrives on the 

scene; (4) incident clearance which refers to the time interval from the arrival of the first 

responder to the time when the incident has been cleared from the freeway; and (5) incident 

recovery covering the time until normal traffic conditions resume.  

 

A critical component of effective TIM involves the ability to predict the likely incident duration 

under various conditions. Based on the predicted duration, authorities can allocate incident 

response personnel and resources more effectively, inform travelers about traffic conditions more 

accurately, and decide upon the appropriate response strategy. 
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Figure 8. Traffic incident management process and accident duration definition 
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This study proposes a new traffic accident duration prediction model which combines a decision 

tree model, namely the M5P tree model, and a statistical hazard-based duration model (HBDM). 

The proposed model will hereafter be referred to as the M5P-HBDM. As will be discussed in 

more detail later, M5P-HBDM offers the advantage of minimizing data heterogeneity through 

dataset classification, while simultaneously avoiding the need for imposing restrictive 

assumptions regarding the distribution of traffic accident durations. The performance of the 

M5P-HBDM was evaluated against the performance of a stand-alone M5P tree algorithm and a 

stand-alone HBDM, on two freeway accident datasets.   

 

The organization of this third major section of the report is as follows.  The section begins with a 

review of previous research on incident duration prediction models and approaches to deal with 

heterogeneity in traffic accident data.  Next, the basic methodologies of M5P tree and HBDM are 

introduced, and the proposed algorithm to build the M5P-HBDM is described.  The two traffic 

accident datasets used in this research are then presented, and three different incident duration 

models are constructed for each dataset: (1) a stand-alone M5P Tree model; (2) a stand-alone 

HBDM; and (3) the proposed M5P-HBDM.  The performances of the three models, in terms of 

prediction accuracy and the significant variables identified, are then compared.  Finally, the 

study’s conclusions are summarized and suggestions for future are provided.  

 

PREVIOUS RESEARCH ON INCIDENT DURATION PREDICTION 

Traffic Accident Duration Analysis 

Given the enormous societal cost of traffic accidents, the transportation research community has 

always been interested in models and methodologies for predicting the likelihood of traffic 

accidents, the factors behind their occurrences, and their likely durations. In terms of accident 

duration analysis, the methods proposed in the literature can be grouped into the following 

categories: (1) statistical methods; and (2) Artificial Intelligence (AI)-based methods. 

 

For statistical methods, previous research has examined the candidate probability distributions 

that fit traffic accident durations. Golob et al. (1987) analyzed truck-involved incident durations 

in California, and reported that the durations of the incidents, categorized by the type of 

collisions, followed a log-normal distribution. On the other hand, Ozbay and Kachroo (1999) 

identity a normal distribution of incident durations for homogeneous incidents grouped by 

incident type and severity.  

 

In terms of statistical methods, regression models have been applied in the past to predict traffic 

accident durations and identify the contributing factors. For example, Giuliano (1989) assigned 

incidents into multiple categories and, for each category, estimated a model for predicting 

incident durations using linear regression techniques. Garib et al. (1997) also developed a 

polynomial regression model to predict incident durations. Their results showed that, in terms of 

adjusted R-square, 81% of the variability in incident durations, in a natural logarithm format, can 

be predicted as a function of six independent variables such as the number of lanes affected, the 

number of vehicles involved, whether a truck was involved or not, the time of day, the police 

response time, and weather conditions. Naturally, standard regression models have the advantage 

of being easily understood and interpreted (Khattak et al., 1995).  
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Besides regression, Nam and Mannering (2000) built hazard-based duration models to evaluate 

incident durations, based on a two-year dataset from the state of Washington. They mentioned 

that, compared to regression approaches, hazard-based duration models have the advantage of 

allowing the explicit study of duration effects (i.e., the relationship between how long an incident 

has lasted and the likelihood of it ending soon). Recently, Alkaabi et al. (2011) and Chung 

(2010) also developed hazard-based duration models to predict traffic accident durations, and to 

analyze the factors affecting such durations.    

 

For AI-based methods, decision trees were used in previous research to predict incident durations 

(He et al., 2013; Ozbay et al., 1999; Smith and Smith, 2001). The main advantage of decision 

trees is that they require no assumption regarding the probability distribution of the incident 

duration data (Alkaabi et al., 2011). On the negative side, however, Ozbay and Noyan (2006) 

pointed out that the decision trees can sometimes become unstable and insensitive to the 

stochastic nature of the data. Many other AI techniques have also been utilized.  Examples 

include Bayesian networks (BN) (Ozbay and Noyan, 2006), artificial neural networks (ANN) 

(Wei and Lee, 2007), genetic algorithms (GA) (Lee and Wei, 2010) and support vector machines 

(Valenti et al., 2010). Recently, Lin et al. (2014) proposed a complex network algorithm, which 

combines the modularity-optimizing community detection algorithm and the association rules 

learning algorithm, to unveil the factors that affect incident clearance time.  

 

Data Heterogeneity 

The heterogeneity inherent in traffic accident data often prevents their further exploration 

(Savolainen et al., 2011). In the presence of data heterogeneity, the patterns/distributions 

observed at the population level may be surprisingly different from the underlying patterns at the 

individual level (Vaupel and Yashin, 1985). In other words, the aggregated behavior of a 

heterogeneous population, composed of two or more homogeneous but differently behaving 

subpopulations, will differ from the behavior of any single individual (Lerman, 2013). 

 

To deal with the issue, random effects and random parameters models have been proposed for 

traffic accident data analysis (Karlaftis and Tarko, 1998; Miaou et al., 2003; Anastasopoulos and 

Mannering, 2009). Such models capture the unobserved heterogeneity by using random error 

terms, and allow each estimated parameter of the model to vary across each individual 

observation in the dataset (Lord and Mannering, 2010). This can prevent the problems of 

inconsistent coefficient estimates and inferences (Nam and Mannering, 2000). 

 

Clustering and classifying the traffic accident data is another way to minimize the heterogeneity 

problem. One way to classify traffic incidents is based on incident type (Golob et al., 1987; 

Giuliano, 1989; Ozbay and Kachroo, 1999).  In addition, some researchers recently classified 

traffic crash data based on factors such as visibility conditions (i.e., daylight, twilight and night 

conditions (Hong et al., 2014)). A few other clustering methods, including latent class clustering 

(Depaire et al., 2008), k-means clustering (Anderson, 2009), community detection algorithm (Lin 

et al., 2014), have also been applied, as a first step before accident analysis. 

 

METHODOLOGY  

As previously mentioned, this study proposes a new traffic accident duration prediction model 

M5P-HBDM based on the decision tree model M5P tree and the statistical model HBDM. 
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Traditional decision trees were originally proposed by Breiman et al. (1984).  These trees, 

however, have fixed average values at their leaves that cannot model the stochastic nature of the 

parent-child relationship in a realistic way (Ozbay and Noyan, 2006). Considering this, Quinlan 

(1992) developed a new type of a tree named the M5 tree which can have multivariate linear 

models at its leaves; with this, more flexible predictions are allowed. In order to handle 

enumerated attributes and attribute with missing values, Wang and Witten (1997) proposed a 

modified M5 tree algorithm and called it the M5P tree algorithm. M5P tree has the advantages of 

being able to deal with categorical and continuous variables, and of handling variables with 

missing values.  

 

The M5P tree has been applied by Zhan et al. (2011) to predict lane clearance time of freeway 

incidents. One problem with the M5P tree is that given that linear regression Y=βX+ε is used to 

build the tree’s leaves, the residuals ε have to be assumed to be normally distributed.  This means 

that the conditional distribution of accident clearance time Y, given the explanatory variables X, 

has to be assumed to follow a normal distribution as well. However, the distribution for time to 

an event (here it is the time when the traffic returns to normal) is almost certainly 

nonsymmetrical (Cleves et al., 2008).  

 

HBDM, on the other hand, is a statistical model used to analyze the duration of a specific event. 

The model allows different distributions of the duration to be assumed (e.g., Weibull 

distribution, log-normal distribution, log-logistic distribution and so on). The HBDM has been 

previously applied to analyze and predict incident duration, but on an unclassified dataset (Nam 

and Mannering, 2000; Chung, 2010; Alkaabi et al., 2011). To the best of the authors’ knowledge, 

previous research did not attempt to combine a classification method with HBDMs. It would be 

of interest to investigate whether classifying accident dataset would, for example, yield 

additional insight into the relationship between accident duration and the explanatory variables, 

and whether the prediction performance can be improved with a combined M5P-HBDM.  

 

The proposed M5P-HBDM retains the superior ability of the M5P tree at classifying traffic 

accident datasets, but replaces the linear regression models typical of the M5P algorithm with 

HBDMs, which in turn allows for using the probability distribution that best fits the data.  The 

following section will introduce M5P tree and HBDM first, followed by a detailed description of 

the proposed the M5P-HBDM and the algorithm developed to construct the model. 

 

M5P Tree Algorithm  

The M5P tree algorithm mainly includes two steps (Quinlan, 1992; Wang and Witten, 1997): the 

tree growth step and the tree pruning step. Assume there is a collection of 𝑇𝑛 training cases at 

node 𝑛 (𝑛 = 0 for the root node), and assume that each case has a fixed set of attributes, either 

discrete (binary or categorical) or continuous (e.g., visibility), and has a target value (i.e., the 

traffic accident duration). Before tree construction, all categorical attributes need to be 

transformed into binary variables.  If a categorical attribute has 𝑐 possible values, it will be 

replaced by 𝑐 − 1 synthetic binary attributes with one representing each possible value. 

Therefore, after the variable transformation, all splits in a M5P tree are binary.  

 

In the tree growth step, the algorithm firstly calculates the standard deviation 𝑠𝑑(𝑇𝑛) of the 

target values of the cases in 𝑇𝑛.  Assuming that there is a test tree that splits 𝑇𝑛 into O outcomes 
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(= 2 for a binary split), the objective function is to find the potential test tree that maximizes the 

reduction in the standard deviation, calculated according to Equation 14 

 

 ∆𝒔𝒅 = 𝒔𝒅(𝑻𝒏) − ∑
|𝑻𝒊

𝒏|

|𝑻𝒏|
× 𝒔𝒅(𝑻𝒊

𝒏)𝑶
𝒊=𝟏   

Equation 14 

 

Where 𝑇𝑖
𝑛 denote the subset of cases that have the ith outcome of the potential test, 𝑠𝑑(𝑇𝑖

𝑛) 

denote the standard deviation of the target values of cases in 𝑇𝑖
𝑛, |𝑇𝑖

𝑛| denote the number of cases 

in 𝑇𝑖
𝑛, and |𝑇𝑛| is the number of cases in 𝑇𝑛. ∑

|𝑇𝑖
𝑛|

|𝑇𝑛|
× 𝑠𝑑(𝑇𝑖

𝑛)𝑂
𝑖=1  is the weighted average 

standard deviation after the split.  

 

The same process is applied recursively to the subsets, until the subsets at a node either contain 

only a small number of instances/cases, or their target values show very small variations from 

one another. This means that there are two termination thresholds for the algorithm: the first is 

𝑇𝐻1, which refers to the minimum number of cases allowed at a node, and the second is 𝑇𝐻2, 

which is used to check whether the standard deviation of the target values at the node is less than 

𝑇𝐻2 ∗ 𝑠𝑑(𝑇0). The nodes where the split terminates are marked as “leaf” nodes, whereas the 

other nodes are marked as interior or non-leaf nodes. After the initial tree has been grown, a 

multivariate linear model is constructed for each non-leaf node of the model tree by using the 

standard regression techniques.  

 

In the tree pruning step, starting near the bottom of the tree, the algorithm examines each non-

leaf node of the model to determine whether this node should be replaced with the linear model 

developed above, as a new leaf node, or whether the subtree should be kept intact. The decision 

is made based upon which approach (i.e., the linear model or the sub-tree) would yield the lower 

estimated error.  The estimated error of the linear model is calculated using Equation 15: 

 

 𝑬𝒓𝒓𝒐𝒓 =
𝑵+𝒗

𝑵−𝒗
∗

∑ 𝒂𝒃𝒔(𝑽𝒂𝒄𝒕−𝑽𝒑𝒓𝒆)𝑵
𝒊=𝟏

𝑵
     

Equation 15 

 

As can be seen, the estimated error is the average absolute difference between the actual target 

values 𝑉𝑎𝑐𝑡 of the training cases and the predicted values, 𝑉𝑝𝑟𝑒.  This is given by the linear model 

at the current node (or the average target value for the leaf node), and adjusted by (𝑁 + 𝑣)/(𝑁 −
𝑣), where 𝑁 is the number of training cases going through this current node, and 𝑣 is the number 

of the parameters in the linear model. For the estimated error of the sub-tree alternative, the error 

from each branch is combined into a single overall value for the node, using a linear sum in 

which each branch is weighted by the proportion of the training cases that go down through it 

(Wang and Witten, 1997). 

  

 Hazard-based Duration Model  

Suppose the duration of a specific traffic accident is represented by a continuous random variable 

𝐷 with a cumulative probability distribution function, 𝐹(𝑑).   𝐹(𝑑) represents the probability 

that duration 𝐷 is less than a time value 𝑑, and is called the failure function in HBDM.  It is 

defined as shown in Equation 16: 
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 𝐹(𝑑) = ∫ 𝑓(𝑢)𝑑𝑢
𝑑

0
= P(𝐷 < 𝑑) , 0 < 𝑑 < ∞  

Equation 16 

The corresponding probability density function is thus given as: 

 𝑓(𝑑) =
𝛿𝐹(𝑑)

𝛿𝑑
= 𝑙𝑖𝑚

∆𝑑→0

𝑃(𝑑≤𝐷<𝑑+∆𝑑)

∆𝑑
 

 Equation 17 

 

where 𝑓(𝑑) describes the instantaneous failure rate in the infinitesimally small interval [d, d +
∆d].  Also given F(d), the survival function, 𝑆(𝑑), is defined as in Equation 18 

 𝑆(𝑑) = 1 − 𝐹(𝑑) = 𝑃(𝐷 ≥ 𝑑)  

Equation 18 

where 𝑆(𝑑) denotes the probability that the duration 𝐷 is longer than time value 𝑑. 

At last, with the probability density function 𝑓(𝑑) and the survival function 𝑆(𝑑) known, the 

hazard function ℎ(𝑑) is defined in Equation 19 as follows: 

 ℎ(𝑑) =
𝑓(𝑑)

𝑆(𝑑)
= lim

∆𝑑→0

𝑃(𝑑≤𝐷≤𝑑+∆𝑑|𝐷≥𝑑)

∆𝑑
  

Equation 19 

where ℎ(𝑑) can be interpreted as the instantaneous failure rate at time 𝑑, given that the duration 

has lasted at least 𝑑 minutes.  

 

The accelerated failure time model (AFT) is a main approach to investigate the effects of 

explanatory variables on accident durations using HBDMs (Alkaabi et al., 2011; Chung, 2010).  

AFT assumes a distribution for  

 𝜏 = 𝑒𝑥𝑝 (−𝑥𝑖𝛽) ∗ 𝑑𝑖  

Equation 20 

 

where 𝜏 may have a specified distribution like the Weibull distribution, the Log-normal 

distribution, or the Log-logistic distribution, 𝑑𝑖 is the duration of case 𝑖, 𝑥𝑖 is its value vector of 

explanatory variables, and  𝛽 is the vector of estimated coefficients. After taking the logarithm 

for both sides, the AFT model can be framed as a linear model as shown in Equation 21: 

𝒍𝒏(𝒅𝒊) = 𝒙𝒊𝜷 + 𝒍𝒏 (𝝉) 

Equation 21 

 

where 𝑙𝑛(𝑑𝑖) is the natural logarithm of the survival time. With the parameters in 𝛽 and 𝜏  

estimated, for  a new observation, the mean or median of the failure time distribution can be 

calculated and used as the prediction for the accident duration (Cleves et al., 2008). 
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M5P-HBDM Model 

This section will describe the process of building the proposed M5P-HBDM and how it is 

designed to take advantage of the strengths of each of the M5P and HBDM methods, described 

above; appendix A shows the pseudo-codes of the M5P-HBDM algorithm, and compares it with 

the original M5P algorithm described in Wang and Witten (1997).   As can be seen from 

appendix A, the building process of the M5P-HBDM model is very similar to that for the M5P 

model in that the two main steps of tree growth and tree pruning are preserved. Nevertheless, 

there are a few differences between the original M5P tree and the proposed M5P-HBDM 

algorithms. 

 

First, in the split step for tree growth, when the stop criteria are met and the node is marked as a 

leave node, the original M5P tree algorithm uses the average of the target values for that leave 

node.  In the HBDM-M5P algorithm, on the other hand, the algorithm proceeds to build a 

HBDM model using the training cases at that leave node. If the prediction performance of the 

HBDM model is better than the constant average value, we use the HBDM model as the model 

of the leave node.  

 

Second, in the pruning step where a model needs to be built for each interior/non-leaf node, the 

original M5P tree algorithm (Wang and Witten, 1997) builds a linear regression model for the 

current node, using only the variables that are referenced by the subtree.  The algorithm then 

greedily drops the variables, if doing so decreases the prediction errors calculated using equation 

(2). This means that the linear regression models in the original M5P algorithm do not consider 

problems such as whether the variables are significant, or whether the signs of the variables are 

meaningful. For the M5P-HBDM algorithm, a HBDM model is built for a node using all the 

variables except those that have been taken by the higher-level nodes in the path from the root to 

the current node. The prediction performance of a HBDM model, along with the p-values of the 

variables and the signs of the variables, are all checked to make sure that the variables included 

are significant and that the signs of their coefficients agree with intuition.  

 

Third, in the proposed M5P-HBDM, the model of the node can consist only of the constant value 

calculated by taking the average or the median of the target values (which will thus constitute the 

predicted value of the traffic accident duration).  It can also be a HBDM, where the predictions 

of the target values would be the mean or median value of the AFT with a selected distribution 

shown in Equation 20. This is different from the prediction calculation using the constant 

average value or the linear regression models in the original M5P tree algorithm, as will be 

explained in more detail later.  

 

MODELING DATASETS  

 

Virginia Traffic Accident Dataset  

The Virginia dataset included traffic accident records reported in 2005 and 2006 on a segment of 

interstate highway I-64 in Norfolk, Virginia. The accidents were monitored and recorded by 

Virginia Department of Transportation (VDOT’s) Archived Data Management System (ADMS). 

For this study, 602 accident records were selected; for each record, 17 variables are used to 

describe the accident. These variables are summarized in Table 10. 
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Table 10. Traffic accident variables in I-64 dataset 

 

Variables  Values 

Season  Spring (March, April, May); Summer (June, July, August); Autumn 

(September, October, November); Winter (December, January, February) 

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); No 

Hour of the day  Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 

PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 

PM-6 AM)  

Weather 

conditions  

Clear; Rain; Snow 

Direction East Bound; West Bound 

Location code 1; 2; 3; 4; 5; 6; 7; 8 ;9 (the codes mean different detectors) 

Lane number at 

main road 

2; 3; 4 

Road structure Ramp; Highway 

Detection source CCTV; FIRT; Phone Call; SSP; TMS Camera; VSP CAD; VSP Radio; 

Other 

Accident Type Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 

Moving to 

shoulder 

Yes; No 

Fire  Yes; No 

Roll over Yes; No 

Number of 

vehicles involved 

1; 2; greater than 2 

Blocked lanes 0; 1; 2; 3; 4 

Injured number 0, 1, … 

Duration 0, 1, … 

 

As can be seen, there are: (a) three temporal variables in the dataset (season, weekday and hour 

of the day); (b) one environmental variable (weather conditions); (c) four geographic or spatial 

variables (direction, location code, lane number at main road, and road structure); and (d) nine 

accident outcome variables (detection source, accident type, moving to shoulder, fire, roll over, 

number of vehicles involved, blocked lanes, injured number and duration).  

 

Among the traffic accident relevant variables, the “location code”, which takes on values from 

“1” to “9”, refers to the nearest traffic detector code (there are nine detectors in this segment of I-

64) to the accident location. “Detection source” is included to investigate whether the accident 

reporting way has any impact on accident duration.  “Accident type” is included, since the type 

of the accident naturally affects the manner followed to remove the accident, and the equipment 

used, which in turn may affect accident duration (Chung, 2010).  Finally, the variable “Moving 

to shoulder” is included, because it is generally assumed that moving vehicles to the shoulder 

after an accident contributes to shorter recovery time and thus shorter accident duration.  
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Buffalo-Niagara Traffic Accident Dataset 

This dataset included 616 traffic accidents observed on I-190 from 01/01/2008 to 10/31/2012. 

Incidents and traffic flow information are monitored and recorded by the Niagara International 

Transportation Technology Coalition (NITTEC), which serves as the region’s Traffic Operations 

Center (TOC). Incident details are recorded every day through detailed incident log forms, which 

formed the basis for compiling the dataset used in this study. Table 11summarizes the variables 

included in the Buffalo-Niagara dataset. 

 

Table 11. Traffic accident variables in I-190 dataset 

Variables  Values 

Season  Spring (March, April, May); Summer (June, July, August); Autumn 

(September, October, November); Winter (December, January, February) 

Weekday Yes (Monday 2 AM-Friday 9 PM, except holidays); No 

Hour of the day  Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 

PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 

PM-6 AM)  

Visibility 0-10 

Wind speed 0 mph (miles per hour), …,  

Weather 

conditions  

Clear; Rain; Snow 

Direction North Bound; South Bound 

Location code 1; 2; …; 24; 25; 26 (the codes represent different exits at I-190) 

Lane number at  

main road 

2; 3; >=3 

Lane number at  

ramp 

0 (away from exit); 1; 2 

Ramp type On ramp; off ramp; highway to highway on ramp; highway to highway off 

ramp 

Ramp layout On ramp, off ramp; off ramp, on ramp; only off ramp; only on ramp 

Road structure Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before 

the bridge; after the bridge 

Accident Type Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 

Blocked lane  N/A at main road; Left lane at main road; middle lane at main road; right 

lane at main road; left two at main road; right two at main road; left and 

right lanes at main road; all lanes at main road; N/A at ramp; left lane at 

ramp; right lane at ramp; all lanes at ramp 

Blocked lanes 

number at main 

road 

0; 1; 2; 3 

Blocked lanes 

number at ramp 

0; 1; 2 

Injured  Yes; No 

Roll over Yes; No 

Congestion Yes; No 
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Fire Yes; No 

Number of 

vehicles 

involved 

1; 2; greater than 2 

Duration 0, 1, … 

 

In this dataset, there are 23 variables in total for each accident record. The three temporal 

variables are the same as those in the I-64 dataset: season, weekday and hour of the day. There 

are: (a) three environmental variables: visibility, wind speed and weather conditions; (b) seven 

geographic or spatial variables: direction, location code, lane number on main road, lane number 

on ramp, ramp type, ramp layout and road structure; and (c) ten accident outcome variables: 

accident type, block lane index, blocked lanes number at main road, blocked lanes number at 

ramp, injured, roll over, congestion, fire, number of vehicles involved and clearance time.  

 

The “Location code” variable in this dataset can range from “1” to “26”, and refers, in this case, 

to the ID of the nearest exit from the accident location. For example, “1” means the accident is 

closest to Exit 1 on I-190. “Ramp type” can be one of the following: (1) a “highway to highway 

on ramp”; or (2) “highway to highway off ramp”, since I-190 is connected to other two highways 

“I-290” and “I-90”. If the ramp is from the other highway to I-190, we classify the ramp as 

“highway to highway on ramp”. “Ramp layout” is the layout of the ramps at the exit. The 

relative location order of “on-ramps” and “off-ramps” may impact the accident duration. 

“Blocked lane” records the blocked lane at the main road or the ramp, as a result of the traffic 

accident.  

 

Comparing the two datasets, we can see that the records have different emphasis on traffic 

accidents characteristics. The I-64 accident dataset records detailed information about moving 

the vehicles to the shoulder and the detection source. In contrast, the I-190 accident dataset 

includes information such as on which lane the accident occurred, whether the accident happened 

on the mainline or on the ramp, among other attributes.  

   

MODEL DEVELOPMENT 

 

As mentioned before, the I-64 dataset included 602 traffic accident records and the I-190 dataset 

included 616 traffic accident records. For each dataset, the first 500 records were used for model 

training, and the remainder data points for testing. For each dataset, three different models are 

developed: (1) a stand-alone M5P tree; (2) a stand-alone HBDM; and (3) the proposed combined 

M5P-HBDM.  

 

M5P Tree 

In this study, a Matlab package called M5PrimeLab (Jekabsons, 2010) was used for the M5P tree 

model development. To build the tree, the modeler needs first to decide upon the values of the 

two thresholds, namely: (1) the minimum number of training records at one node 𝑇𝐻1; and (2) 

the ratio of the standard deviation 𝑇𝐻2, previously mentioned.    

 

Although the value of 𝑇𝐻1 can be set as low as 2, it is generally not desirable for a non-lead 

node to have too few records, in order to allow for building good linear regression models after 
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the tree growth step. In this study, we experimented with 𝑇𝐻1 values ranging from 5% to 10% of 

the total number of training cases (i.e., values between 25 and 50). After some experimentation, 

𝑇𝐻1 was set to 30, and 𝑇𝐻2 was set to 0.95. Figure 1Figure 9 shows the resulting M5P tree 

model for the I-64 dataset. 

 

Moving to shoulder? 

37 (96) 

No 

 Anyone Injured? 

  

LM1   

No 

Yes 

  Lane Number at  

Main Road <=2 

Yes 

Yes 

43.45 (92)   

No 

LM2   

  
Detection Source 

=FIRT, Cell Phone or 

TMS Camera 

Yes No 

58.84 (70)   70.12 (33)   

  Hour of the day 

=Night? 

Yes No 

61.72 (44)   50.03 (165)   

 

Figure 9. M5P tree model for I-64 training dataset. 

 

As can be seen in Figure 9., for some leaf nodes, there are a constant value and a number in the 

parenthesis.  The constant value is the average of the accident durations (in minutes) for the 

cases in that node, and the number in parenthesis is the number of those cases. There are also two 

linear models in two leaf nodes, LM1 and LM2. In the tree pruning step, these two models 

replaced the original sub trees (enclosed by the red rectangles in Figure 9.). The details of LM1 

and LM2 are listed below. 

LM1: Duration=62.46 minutes (103 cases); 
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LM2: Duration=52.49 minutes (209 cases); 

 

As can be seen, the two linear regression models developed here are basically two constants. As 

discussed before, after building a linear regression model for an interior node, the M5P algorithm 

uses a greedy search to remove variables that do not improve the predictions for the cases going 

through that node.  In our case, the algorithm ended up removing all variables, and the linear 

models ended up with just the constant. The number in the parentheses refers to the number of 

training cases at that leaf.  

 

Insight into the factors affecting accident duration can be gained from studying the developed 

tree.  First from the splitting rule at the root node, it can be seen that if the vehicles involved 

were moved to the shoulder once the accident happened, the average accident duration was only 

37 minutes. On the other hand, if the vehicles were not moved to shoulder, the duration was 

significantly longer.  Specifically, with the vehicles not moved to the shoulder and with someone 

injured, the accident duration was estimated to be as long as 62.46 minutes (according to the 

LM1 model). With no injury, involved vehicles not moved to the shoulder, and when the number 

of lanes on the freeway equal to 2, the accident duration was estimated to be equal to 43.45 

minutes, which is shorter than the cases when the accidents happened on freeways with more 

than 2 lanes (for that case, the estimated duration was 52.49 minutes as given by LM2). This is 

probably because there is lighter traffic on freeways with lower number of lanes.  

  

Similarly, an M5P tree was developed for the Buffalo-Niagara I-190 accident dataset.  After 

experimentation as before, 𝑇𝐻1 was set to 35, and 𝑇𝐻2 to 0.75. Figure 10 shows the M5P tree 

model that resulted.  
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Figure 10. M5P tree model for I-190 training dataset. 

Accident Type=Truck?  

Yes 

No 

 Away from the ramps? 

 

Hour of the day= 

Morning (7 AM-9 AM) or 

Early afternoon (10 AM-12 Noon) or 

Evening rush (4 PM-6 PM) 

 

64.78 (37) 
  

No Yes 

Yes No 

54.55 (56) 
  

33.3 (47) 
  

38.48 (360)   

LM1 
  

 

We can see that this is an extreme situation for the algorithm, when the whole grown M5P tree is 

replaced by one linear regression model LM1 in the tree pruning step (shown below).  

 

LM1: Duration=37.95+6.92*Hour of the day= Morning (7 AM-9 AM) or Early afternoon (10 

AM-12 Noon) or Evening rush (4 PM-6 PM)? (500 cases); 

 

The developed LM1 shows that the estimated duration of an accident is at least 37.95 minutes, 

and that there is only one independent variable, which is the “hour of the day”.  If the hour is one 

of the following time intervals, the morning (7 AM-9 AM) period, or early afternoon (10 AM-12 

Noon) or evening rush (4 PM-6 PM)” hour, the duration will be increased by 6.92 minutes. 

 

In conclusion, it can be seen that while the tree pruning step of the original M5P is designed to 

allow for the use of the linear regression model when it can bring the lower estimated error, that 

step has resulted, for both the Virginia and Buffalo datasets utilized in this study, in models with 

very weak explanatory power (i.e., few independent variables).   
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Hazard-based Duration Model 

Before applying HBDM models, there are two issues that need to be addressed.  First, a 

probability distribution form needs to be specified for 𝜏 in Equation 20. Secondly, the 

significant explanatory variables 𝑥𝑖 need to be determined. In this study, we followed the four-

step procedure outlined, aided by STATA software, to develop the HBDM (Collett, 2003; 

Alkaabi et al., 2011). 

1. Fit models using exponential, Weibull, Log-normal, Log-logistic and Generalized 

Gamma models with no explanatory variables. Record the log likelihood for each model.  

2. For each model, add the explanatory variables from the candidate variable list, one by 

one, test the new model, and select the one which increased the log likelihood the most. 

3. For each model, repeat step 2 by adding one additional variable from the remainder of 

the candidate variables.  Stop when no variable can increase the log likelihood.  

4. For each model, calculate the value of the Akaike information criterion (AIC), which 

can be calculated as shown in below (Alkaabi et al., 2011; Cleves et al., 2008): 

 

𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2(𝑘 + 𝑐) 

Equation 22 

 

Where 𝐿 is the likelihood, 𝑘 is the number of model covariates, and c is the number of model-

specific distributional parameters. Finally select the model with the lowest value of AIC as the 

HBDM model.  

 

The AIC values of the HBDMs developed for the I-64 and I-190 datasets are listed in Table 12 .  

As can be seen, for both the I-64 and the I-190 datasets, the HBDM model with the log-normal 

distribution had the lowest AIC, and hence this was the model employed to analyze the accident 

duration in this study. It is to be noted that this is consistent with other studies reported in the 

literature (Golob et al., 1987; Chung, 2010).  

 

Table 12. AIC values of HBDMs for I-64 and I-190 training datasets 

 

Model  I-64 dataset I-190 dataset 

-2lnL k c AIC -2lnL k C AIC 

Exponential  1169.42 9 1 1179.42 1223.04 2 1 1226.04 

Weibull 952.92 9 2 963.92 1105.78 9 2 1116.78 

Log-normal 949.08 6 2 957.08 1107.72 3 2 1112.72 

Log-logistic 954.62 8 2 964.62 1186.34 9 2 1197.34 

Generalized gamma 957.24 5 3 965.24 1185.3 9 3 1197.3 

 

For the log-normal regression AFT model, 𝜏 is distributed as log-normal with parameters (𝛽0, 𝜎). 

The log-normal AFT function can thus be expressed as in Equation 23 below (Cleves et al., 

2008): 

 𝑙𝑛(𝑑𝑖) = 𝛽0 + 𝑥𝑖𝛽 + 𝜇  

Equation 23 

    where 𝜇 follows a normal distribution with mean 0 and standard deviation 𝜎. 
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For the I-64 dataset, Table 13 shows the estimated coefficients of the explanatory variables, the 

standard error, the P-value, and percentage change (%) for the log-normal AFT model. The 

percentage change represents the change in the duration of the incident resulting from a one unit 

change in the value of the variable under consideration.  

 

Table 13. Log-normal AFT models on I-64 training dataset 

Variable  Coefficient Standard Error P value Percentage Change (%) 

Night 0.19 0.07 0.016 21% 

Move to shoulder? -0.36 0.07 0.000 -30% 

Road structure 0.26 0.10 0.017 30% 

Injured Number 0.22 0.04 0.000 25% 

Detection=7 (VSP Radio) -0.16 0.08 0.025 -15% 

Roll over 0.51 0.25 0.041 67% 

𝛽0 3.41 0.11 0  

𝜎 0.62 0.02   

 

Similarly, Table 14 lists the coefficients of the significant independent variables, along with the 

corresponding standard error, P-value, and percentage change (%), for the log-normal AFT 

model of the I-190 training dataset (i.e., the Buffalo-Niagara dataset).  

 

Table 14. Log-normal AFT models on I-190 training dataset 

Variable  Coefficient Standard Error P value Percentage Change (%) 

Afternoon (1 PM-3 PM) -0.16 0.10 0.007 -15% 

Roll Over? 0.83 0.26 0.001 129% 

Vehicle number 0.21 0.10 0.050 23% 

𝛽0 3.06 0.20 0  

𝜎 0.75 0.02   

 

As can be seen, the only variable with negative percentage change (%) is the variable 

“Afternoon” (1 PM-3PM), which shows that if the accident were to happen during this time 

interval, the duration would be 15% shorter, most probably because of lighter traffic during that 

time period. Also similar to the results for the I-64 training dataset, the rolling over of the 

involved vehicles can lead to a dramatic increase in the accident duration (in this case of about 

129%).    

 

M5P-HBDM model 

Now with the stand-alone M5P and HBDM models developed for the two datasets, the study 

proceeded to construct the new M5P-HBDM proposed herein, following the procedure 

previously described.  Figure 11 shows the M5P-HBDM built for the I-64 or the Virginia 

training dataset.  
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Moving to shoulder? 

HBDM1   

Yes No 

HBDM2   

Figure 11. M5P-HBDM model for I-64 training dataset. 

 

The M5P-HBDM model ended up having only one splitting rule, namely “moving to shoulder?”. 

The AIC test shows the log-normal distribution is still the best assumption for the accelerated 

failure time functions of HBDM1 and HBDM2. Table 15 shows the relevant parameters for the 

two models.  

 

Table 15.  Log-normal AFT models in M5P-HBDM of I-64 training dataset 

Branches Variable  Coefficient Standard 

Error 

P 

value 

Percentage Change 

(%) 

HBDM1 

(96 

cases) 

𝛽0 3.36 0.08 0  

𝜎 0.74 0.05   

HBDM2 

(404 

cases) 

Night 0.14 0.07 0.06 15% 

Blocked lane number 0.06 0.04 0.007 6% 

Road structure 0.27 0.10 0.005 31% 

Injured Number 0.18 0.05 0.000 20% 

Detection= 5 (TMS 

Camera)? 

0.06 0.07 0.007 6% 

Detection= 7 (VSP 

Radio)? 

-0.13 0.09 0.008 -12% 

Roll over? 0.54 0.27 0.05 72% 

Fire or not? 0.11 0.09 0.02 12% 

𝛽0 3.31 0.12 0  

𝜎 0.60 0.02   

 

As can be seen, for the log-normal AFT model HBDM1, no significant variables are found; only 

the constant 𝛽0 and the sigma in the log-normal distribution are estimated. For the HBDM2, a 

few additional observations, beyond the insight made possible from the stand-alone HBDM.  

First, the “blocked lane number” variable shows that one more lane being blocked can increase 

the accident duration by 6%. Second, the detection source “detection=5” (TMS camera) 

demonstrates that the accidents detected by camera have a longer duration (this was also shown 

in the M5P tree model before pruning). Finally, one more observation is that if the vehicle in the 

traffic accident is on fire, the duration is likely to increase by 12%.  
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Similarly, the M5P-HBDM of I-190 dataset is shown in Figure 12. M5P-HBDM model for I-190 

training dataset.  

 

 
Figure 12. M5P-HBDM model for I-190 training dataset. 

 

For both HBDM1 and HBDM2, the AIC test still shows that the log-normal distribution appears 

to be the best assumption for the AFT functions. The relevant parameters of HBDM1 and 

HBDM2 are shown in Table 16.  

 

Table 16. Log-normal AFT models in M5P-HBDM of I-190 training dataset 

Branches Variable  Coefficient Standard 

Error 

P 

value 

Percentage 

Change (%) 

HBDM1 

(103 cases) 

Evening Rush (4 PM-

6 PM) 

0.44 0.22 0.05 55% 

𝛽0 3.38 0.10 0  

𝜎 0.87 0.06   

HBDM2 

(360 cases) 

Morning (7 AM-9 

AM) 

0.06 0.11 0.02 6% 

Afternoon (1 PM-3 

PM) 

-0.21 0.11 0.05 -19% 

Vehicle Number 0.32 0.14 0.007 38% 

Location=Exit 16 0.34 0.14 0.019 40% 

Main Road Lane 

Number=2 

-0.90 0.67 0.02 -59% 

Main Road Lane 

Number=3 

-0.96 0.67 0.01 -62% 

𝛽0 3.72 0.73 0  

𝜎 0.67 0.02   

 

Accident Type=Truck?  

Yes 

No 

 Away from the ramps? 

44 (37)   

No Yes 

HBDM2   HBDM1   
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From Table 16, we can see that for HBDM1 based on the cases when the accidents happen away 

from the ramps, the accident duration is increased by 55% if the accident were to occur during 

the evening rush period (4 PM-6 PM).  This makes sense since it is definitely harder to clear an 

incident during heavy traffic.  Regarding the HBDM2 based on the 360 cases, the results show, 

for example, that accidents happening at Exit 16 (I-190/I-290 Interchange) have significantly 

longer durations than those occurring elsewhere (40% longer). This observation makes perfect 

sense, given the extremely high volumes at the I-190 and I-290 interchange in Buffalo.  In fact, 

our previous research also showed that Exit 16 is one of the accident hotspots on I-190 (Lin et 

al., 2014), as well as one where significant traffic and weaving maneuvers take place all the time.   

 

MODEL COMPARISON 

Significant Independent Variables Comparison 

 

Table 17. Significant variables in M5P, HBDM and M5P-HBDM of I-64 training dataset 

 

I-64 Training Dataset M5P HBDM M5P-HBDM 

Lane Number at Main Road <=2? X (-)   

Move to Shoulder? X (-) X (-) R 

Injured Number X (+) X (+) X (+) 

Road Structure (0 for highway, 1 for ramp)  X (+) X (+) 

Hour of the day=night?  X (+) X (+) 

Roll Over?  X (+) X (+) 

Detection Source=Virginia State Police Radio  X (-) X (-) 

Detection Source= Camera?   X (+) 

Blocked lane number at main road   X (+) 

Fire or not?   X (+) 

 

Table 17 lists all the significant variables identified by each of the M5P, HBDM and M5P-

HBDM models, for the I-64 training dataset (the sign in the parenthesis indicates the impact of 

that variable in terms of increasing or decreasing accident duration. The symbol “R” indicates 

that the variable resulted in a splitting rule for the model, as a part of the M5P algorithm.  

 

As can be seen from Table 17, the M5P model helped identify only three significant independent 

variables affecting accident duration.  HBDM, on the other hand, identified six significant 

variables, whereas eight significant variables and one splitting rule were identified by the M5P-

HBDM model. Two significant variables “moving to shoulder?” and “injured number” were 

identified by all the three models.   

 

Similarly, the significant independent variables identified by the M5P, HBDM and M5P-HBDM 

models for the I-190 training dataset are summarized in Table 18. As can be seen, the number of 

significant variables identified by M5P-HBDM far exceeds those identified by either the stand-

alone M5P or the stand-alone HBDM.  
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Table 18. Significant variables in M5P, HBDM and M5P-HBDM of I-190 training dataset 

 

I-190 Training Dataset M5P HBDM M5P-HBDM 

Hour of the day= Morning (7 AM-9 AM) X (+)  X (+) 

Hour of the day= Early afternoon (10 AM-12 Noon) X (+)   

Hour of the day= Evening rush (4 PM-6 PM) X (+)  X (+) 

Hour of the day= afternoon (1 PM-3 PM)  X (-) X (-) 

Vehicle Number  X (+) X (+) 

Roll Over?  X (+) X (+) 

Location=Exit 16   X (+) 

Lane Number at Main Road =2   X (-) 

Lane Number at Main Road =3   X (-) 

Accident Type=Truck?    R 

Away from the ramps?   R 

 

Accident Duration Prediction Comparison 

The prediction accuracy of the three models was compared, using a test set not previously 

utilized in model development.  For prediction performance evaluation, the Mean Absolute 

Percentage Error (MAPE), a widely used measure to assess the accuracy of models developed, 

was utilized.  MAPE can be calculated as follows: 

MAPE =
1

𝑛
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
|

𝑛

𝑖=1

 

Equation 24 

where 𝐴𝑖 is the ith actual value, 𝑃𝑖 is the ith predicted value.  

 

To calculate the predictions, for the M5P tree model, each testing record will be directed toward 

the corresponding leaf, and the linear functions, or the mean target values at that leaf, are used to 

estimate the accident duration. For HBDMs, the mean and the median values of the survival time 

(accident duration) for the log-normal AFT models are calculated and used for prediction (the 

study calculated both the median and the mean values to see which approach yielded better 

predictive accuracy).  For M5P-HBDMs, similar to the M5P tree, the testing record is first 

directed toward the corresponding leave. If there is no log-normal AFT model at the leaf, we use 

the median value of the cases at that node as the prediction.  

 

Table 19 shows the MAPEs of the M5P tree model, HBDM model and the M5P-HBDM model 

for the two testing datasets.  The column labelled “HBDM (median)” lists the HBDM’s MAPE 

resulting from using the median values of the survival times, whereas the column entitled 

“HBDM (mean)” lists the model’s MAPE resulting from using the mean values.  The same is 

true for the columns entitled M5P-HBDM (median) and M5P-HBDM (mean) in connection with 

the M5P-HBDM.  
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Table 19.  MAPEs of M5P tree, HBDM model and M5P-HBDM model 

Datasets M5P  HBDM 

(median) 

M5P-HBDM 

(median) 

HBDM 

(mean) 

M5P-HBDM 

(mean) 

I-64 48.69% 38.32% 36.20% 41.21% 39.10% 

I-190 38.45% 33.61% 31.87% 35.21% 33.15% 

 

Firstly, as can be seen, our experiments in this study seem to indicate that the use of the median 

values of the survival time results in better prediction performance compared to the mean values 

for both HBDMs and M5P-HBDMs. Secondly, for the I-64 testing dataset, the lowest MAPE 

was 36.20% given by the M5P-HBDM (median), followed by the HBDM (median) with an 

MAPE of 38.32%.  The MAPE of the M5P model is the highest (i.e., 48.69%). For I-190 testing 

dataset, the M5P-HBDM (median) still had the best prediction performance with an MAPE value 

equal to 31.87%, followed by M5P-HBDM (mean), HBDM (median), HBDM (mean) and then 

M5P. It thus seems that, regardless of the testing dataset, the M5P-HBDM model based on the 

median value of AFT model appears to perform the best.   

 

CONCLUSIONS AND FUTURE WORK  

This study has proposed a novel approach for accident duration prediction, which constructs a 

M5P-HBDM model in which the leaves of the M5P tree model are HBDMs instead of linear 

regression models. Two traffic accident duration datasets were then used to construct and 

evaluate the performance of three modeling approaches, a stand-alone M5P tree, a stand-alone 

HBDM, and the proposed M5P-HBDM model. Among the main conclusions of the study with 

respect to the proposed new algorithm are:  

 

1. Thanks to the tree growth step of the M5P algorithm, the proposed M5P-HBDM is 

able to reduce data heterogeneity through the splitting rules at the nodes. With this, the 

new algorithm is able to identify more factors as significantly affecting incident duration.  

2. Because M5P-HBDM can build an AFT model as its leaf, and since the AFT model 

does not need to assume that the conditional distribution of traffic accident durations, 

given the independent variables, follows the normal distribution (as was the case with the 

linear regression model in M5P model), the analyst is free to experiment with other 

distributions such as the Weibull distribution, the log-normal distribution, the log-

logistics. In this study, we found that the log-normal AFT model appeared to be the best 

choice, based on the AIC values.  

3. The comparison of the prediction performances of the three models shows that, for 

both testing data sets, the M5P-HBDM based on the median value of the survival time for 

the log-normal AFT model always had the lowest overall MAPE.  

 

For future research, one possible idea to investigate, involves combining the M5P tree algorithm 

with a random parameter HBDM.  This may further improve accident duration prediction, by 

allowing the coefficients of the variables in the model to vary across each individual observation 

in the dataset. Another possible idea is to test the transferability of M5P-HBDM by building a 

unique model for two or more datasets. 

  



 

55 
 

REFERENCES  

Abdel-Aty, M., Pande, A., Das, A., & Knibbe, W. J., 2008. Assessing safety on Dutch freeways 

with data from infrastructure-based intelligent transportation systems. Transportation Research 

Record: Journal of the Transportation Research Board 2083(1), 153-161. 

 

Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, F. M., & Hsia L., 2004. Predicting freeway 

crashes from loop detector data by matched case-control logistic regression. Transportation 

Research Record: Journal of the Transportation Research Board 1897(1), 88-95. 

 

Agrawal, R., T. Imieliński, and A. Swami, 1993. Mining association rules between sets of items 

in large databases. ACM SIGMOD Record, Vol. 22, No. 2, pp. 207-216. 

 

Ahmed, M. M., & Abdel-Aty, M., 2012. The viability of using automatic vehicle identification 

data for real-time crash prediction. IEEE Transactions on Intelligent Transportation Systems, 

13(2), 459-468. 

 

Alkaabi, A., Dissanayake, D., & Bird, R., 2011. Analyzing clearance time of urban traffic 

accidents in Abu Dhabi, United Arab Emirates, with hazard-based duration modeling method. 

Transportation Research Record: Journal of the Transportation Research Board, (2229), 46-54.  

 

Anastasopoulos, P. C., & Mannering, F. L., 2009. A note on modeling vehicle accident 

frequencies with random-parameters count models. Accident Analysis & Prevention, 41(1), 153-

159.  

 

Anderson, T. K., 2009. Kernel density estimation and K-means clustering to profile road 

accident hotspots. Accident Analysis & Prevention, 41(3), 359-364. 

 

Archer, K. J., & Kimes, R. V., 2008. Empirical characterization of random forest variable 

importance measures. Computational Statistics & Data Analysis 52(4), 2249-2260. 

 

Arenas, A., J. Duch, A. Fernández, and S. Gómez, 2007. Size reduction of complex networks 

preserving modularity. New Journal of Physics, Vol. 9, No. 6, pp. 176-190. 

 

Bastian M., S. Heymann, and M. Jacomy, 2014. Gephi: an open source software for exploring 

and manipulating networks. www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/154Forum/ 

1009. Accessed Feb. 18, 2014.  

 

Bayesia, S. A. S., 2013. BayesiaLab 5.1. The technology of Bayesian networks at your service. 

 

Bíl, M., R. Andrášik, and Z. Janoška, 2013. Identification of hazardous road locations of traffic 

accidents by means of kernel density estimation and cluster significance evaluation. Accident 

Analysis & Prevention, Vol. 55, pp. 265-273. 

 

Blondel, V. D., J. L. Guillaume, R. Lambiotte, and E. Lefebvre, 2008. Fast unfolding of 

communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, Vo. 

10, P10008. 



 

56 
 

Breiman, L., 2001. Random forests. Machine learning 45(1), 5-32. 

 

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A., 1984. Classification and regression 

trees. CRC press. 

 

Chen, W. H., and P. P. Jovanis, 2000. Method for identifying factors contributing to driver-injury 

severity in traffic crashes. In Transportation Research Record: Journal of the Transportation 

Research Board, No. 1717,, pp. 1-9. 

 

Chin, S. M., Franzese, O., Greene, D. L., Hwang, H. L., & Gibson, R. C., 2004. Temporary 

losses of highway capacity and impacts on performance: Phase 2. United States Department of 

Energy. 

 

Chung, Y., 2010. Development of an accident duration prediction model on the Korean Freeway 

Systems. Accident Analysis & Prevention, 42(1), 282-289.  

 

Cleves, M., 2008. An introduction to survival analysis using Stata. Stata Press.  

 

Collett, D., 2003. Modelling Survical Data in Medical Research (Vol. 57). CRC press. 

 

de Oña, J., G. López, R. Mujalli, and F. J. Calvo, 2013. Analysis of traffic accidents on rural 

highways using Latent Class Clustering and Bayesian Networks. Accident Analysis & Prevention 

Vol. 51, pp. 1-10. 

 

Depaire, B., Wets, G., & Vanhoof, K., 2008. Traffic accident segmentation by means of latent 

class clustering. Accident Analysis & Prevention, 40(4), 1257-1266.  

 

Efron, B., & Tibshirani, R., 1997. Improvements on cross-validation: the 632+ bootstrap method. 

Journal of the American Statistical Association, 92(438), 548-560. 

 

Fan, J., Han, F., & Liu, H., 2013.  Challenges of Big Data Analysis.  arXiv preprint. 

arXiv:1308.1479. 

 

Farradyne, P. B., 2000. Traffic incident management handbook. Prepared for Federal Highway 

Administration, Office of Travel Management. 

 

Fernández, A., Gómez, Á., Lecumberry, F., Pardo, Á., & Ramírez, I., 2015. Pattern Recognition 

in Latin America in the “Big Data” Era. Pattern Recognition. Pattern Recognition, Vol. 48(4), p. 

1185-1196, 

 

Ferrara, E. A large-scale community structure analysis in Facebook. EPJ Data Science, Vol. 1, 

No. 1, 2012, pp. 1-30. 

 

 

 



 

57 
 

Fortunato, S. Community detection in graphs. Physics Reports, Vol. 486, No. 3, 2010, pp. 75-

174. 

 

Garib, A., Radwan, A. E., & Al-Deek, H., 1997. Estimating magnitude and duration of incident 

delays. Journal of Transportation Engineering, 123(6), 459-466.  

 

Geurts, K., G. Wets, T. Brijs, and K. Vanhoof, 2003. Profiling of high-frequency accident 

locations by use of association rules. In Transportation Research Record: Journal of the 

Transportation Research Board, No. 1840, pp. 123-130. 

 

Ghosh, I, 2012. Examination of the factors influencing the clearance time of freeway incidents. 

Journal of Transportation Systems Engineering and Information Technology, Vol. 12, No. 3, pp. 

75-89. 

 

Giuliano, G., 1989. Incident characteristics, frequency, and duration on a high volume urban 

freeway. Transportation Research Part A: General, 23(5), 387-396.  

 

Golob, T. F., Recker, W. W., & Leonard, J. D., 1987. An analysis of the severity and incident 

duration of truck-involved freeway accidents. Accident Analysis & Prevention, 19(5), 375-395. 

 

Gregoriades, A., and K. C. Mouskos, 2013. Black spots identification through a Bayesian 

Networks quantification of accident risk index. Transportation Research Part C: Emerging 

Technologies, Vol. 28, pp. 28-43. 

 

Gregorutti, B., Michel, B., & Saint-Pierre, P., 2013. Correlation and variable importance in 

random forests. arXiv preprint arXiv:1310.5726. 

 

Han, J., Kamber, M., & Pei, J., 2006. Data mining: concepts and techniques. Morgan kaufmann. 

 

Han, J., Pei, J., Yin, Y., & Mao, R., 2004. Mining frequent patterns without candidate 

generation: A frequent-pattern tree approach. Data mining and knowledge discovery 8(1), 53-87. 

 

He, Q., Kamarianakis, Y., Jintanakul, K., & Wynter, L., 2013. Incident duration prediction with 

hybrid tree-based quantile regression. In Advances in Dynamic Network Modeling in Complex 

Transportation Systems (pp. 287-305). Springer New York.  

 

Hong, S., Kim, J., Oh, C., & Ulfarsson, G. F., 2014. The Effect of Road Environment Factors on 

Freeway Traffic Crash Frequency during Daylight, Twilight, and Night Conditions. In 

Transportation Research Board 93rd Annual Meeting (No. 14-2418). 

 

Hossain, M., & Muromachi, Y., 2012. A Bayesian network based framework for real-time crash 

prediction on the basic freeway segments of urban expressways. Accident Analysis & Prevention 

45, 373-381. 

 

Hung, M. C., & Yang, D. L., 2001. An efficient fuzzy c-means clustering algorithm. In 

Proceedings of the IEEE International Conference on Data Mining, 225-232. 



 

58 
 

 

Jain, A. K., 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 

651-666. 

 

Jekabsons G., 2010. M5PrimeLab: M5' regression tree and model tree toolbox for 

Matlab/Octave. available at http://www.cs.rtu.lv/jekabsons/ 

 

Karlaftis, M. G., & Tarko, A. P., 1998. Heterogeneity considerations in accident modeling. 

Accident Analysis & Prevention, 30(4), 425-433.  

 

Khattak, A., Schofer, J., Wang, M.-H., 1995. A Simple time sequential procedure for predicting 

freeway incident duration. IVHS Journal 2 (2), 113-138. 

 

Kotsiantis, S., & Kanellopoulos, D., 2006. Discretization techniques: A recent survey. GESTS 

International Transactions on Computer Science and Engineering 32(1), 47-58. 

 

Lee, C., and M. Abdel-Aty. Comprehensive analysis of vehicle–pedestrian crashes at 

intersections in Florida. Accident Analysis & Prevention, Vol. 37, No. 4, 2005, pp. 775-786. 

 

Lee, C., Hellinga, B., & Saccomanno, F., 2003. Real-time crash prediction model for application 

to crash prevention in freeway traffic. Transportation Research Record: Journal of the 

Transportation Research Board 1840(1), 67-77. 

 

Lee, Y., & Wei, C. H., 2010. A computerized feature selection method using genetic algorithms 

to forecast freeway accident duration times. Computer‐Aided Civil and Infrastructure 

Engineering, 25(2), 132-148.  

 

Lerman, K., 2013. The Curse of Heterogeneity in Big Data. http://wp.sigmod.org/?p=960. 

 

Liaw, A., & Wiener, M., 2002. Classification and Regression by Random Forest. R News 2(3), 

18-22. 

 

Lin, L., Wang, Q., & Sadek, A. W., 2013. Short-Term Forecasting of Traffic Volume: 

Evaluating Models Based on Multiple Data Sets and Data Diagnosis Measures. Transportation 

Research Record: Journal of the Transportation Research Board 2392(1), 40-47. 

 

Lin, L., Wang, Q., & Sadek, A.W., 2014. Data Mining and Complex Network Algorithms for 

Traffic Accident Analysis. Transportation Research Record: Journal of the Transportation 

Research Board 2460(1), 128-136. 

 

Lin, L., Wang, Q. and Sadek, A.W., 2016. A Combined M5P Tree and Hazard-based Duration 

Model for Predicting Urban Freeway Traffic Accident Durations.   Accident Analysis and 

Prevention, Volume 91, Pages 114–126.   

 

http://www.cs.rtu.lv/jekabsons/


 

59 
 

Lin, L., Wang, Q. and Sadek, A.W., 2015. A Novel Variable Selection Method based on 

Frequent Pattern Tree for Real-time Traffic Accident Risk Prediction.  Transportation Research 

– Part C, Vol. 55, pp. 444–459. 

 

Lord, D., & Mannering, F., 2010. The statistical analysis of crash-frequency data: a review and 

assessment of methodological alternatives. Transportation Research Part A: Policy and 

Practice, 44(5), 291-305.  

 

Lv, Y., Tang, S., & Zhao, H., 2009. Real-Time Highway Traffic Accident Prediction Based on 

the k-Nearest Neighbor Method. In IEEE International Conference on Measuring Technology 

and Mechatronics Automation, 3, 547-550.  

 

Metagenomics Statistics, 2014. <http://dinsdalelab.sdsu.edu/metag.stats/index.html>.  

 

Miaou, S. P., Song, J. J., & Mallick, B. K., 2003. Roadway traffic crash mapping: a space-time 

modeling approach. Journal of Transportation and Statistics, 6, 33-58.  

 

Milton, J. C., Shankar, V. N., & Mannering, F. L., 2008. Highway accident severities and the 

mixed logit model: an exploratory empirical analysis. Accident Analysis & Prevention 40(1), 

260-266. 

 

Mohamed, M. G., N. Saunier, L. F. Miranda-Moreno, and S. V. Ukkusuri. A clustering 

regression approach: A comprehensive injury severity analysis of pedestrian–vehicle crashes in 

New York, US and Montreal, Canada. Safety Science, Vol. 54, 2013, pp. 27-37. 

 

Murphy, K. P., 2012. Machine learning: a probabilistic perspective. MIT Press. 

 

Nam, D., & Mannering, F., 2000. An exploratory hazard-based analysis of highway incident 

duration. Transportation Research Part A: Policy and Practice, 34(2), 85-102.  

 

Netica tutorial, 2014. <https://norsys.com/netica.html>.  

 

Newman, M. E., and M. Girvan. Finding and evaluating community structure in networks. 

Physical review E, Vol. 69, No. 2, 2004, 15 pages. 

 

Oh, C., Oh, J. S., & Ritchie, S. G., 2005. Real-time hazardous traffic condition warning system: 

framework and evaluation. IEEE Transactions on Intelligent Transportation Systems, 6(3), 265-

272. 

 

Okabe, A., T. Satoh, and K. Sugihara, 2009. A kernel density estimation method for networks, its 

computational method and a GIS‐based tool. International Journal of Geographical Information 

Science, Vol. 23, No. 1, pp. 7-32. 

 

Ozbay, K., & Kachroo, P., 1999. Incident management in intelligent transportation systems. 

Artech House, Bonston.  

 



 

60 
 

Ozbay, K., & Noyan, N., 2006. Estimation of incident clearance times using Bayesian Networks 

approach. Accident Analysis & Prevention, 38(3), 542-555.  

 

Pande, A., & Abdel-Aty, M. 2006. Assessment of freeway traffic parameters leading to lane-

change related collisions. Accident Analysis & Prevention 38(5), 936-948. 

 

Quinlan, J. R., 1992. Learning with continuous classes. In 5th Australian joint conference on 

artificial intelligence, Vol. 92, pp. 343-348.  

 

Savolainen, P. T., Mannering, F. L., Lord, D., & Quddus, M. A., 2011. The statistical analysis of 

highway crash-injury severities: a review and assessment of methodological alternatives. 

Accident Analysis & Prevention, 43(5), 1666-1676.  

 

Sawalha, Z., & Sayed, T., 2006. Traffic accident modeling: some statistical issues. Canadian 

Journal of Civil Engineering 33(9), 1115-1124. 

 

Smith, K., & Smith, B., 2001. Forecasting the clearance time of freeway accidents. Center for 

Transportation Studies, University of Virginia.  

 

Valent, F., F. Schiava, C. Savonitto, T. Gallo, S. Brusaferro, and F. Barbone. Risk factors for 

fatal road traffic accidents in Udine, Italy, 2002. Accident Analysis & Prevention, Vol. 34, No. 1, 

pp. 71-84. 

 

Valenti, G., Lelli, M., & Cucina, D., 2010. A comparative study of models for the incident 

duration prediction. European Transport Research Review, 2(2), 103-111. 

 

Vaupel, J.W. and Yashin, A.I., 1985. Heterogeneity's ruses: some surprising effects of selection 

on population dynamics. The American Statistician, 39(3), pp.176-185. 

 

Xi, J., Z. Gao, S. Niu, T. Ding, and G. Ning, 2013. A Hybrid Algorithm of Traffic Accident Data 

Mining on Cause Analysis. Mathematical Problems in Engineering, Vol. 2013, 8 pages.  

 

Xie, Z., and J. Yan. Kernel density estimation of traffic accidents in a network space, 2008. 

Computers, Environment and Urban Systems, Vol. 32, No. 5, pp 396-406. 

 

Xu, C., Tarko, A. P., Wang, W., & Liu, P., 2013. Predicting crash likelihood and severity on 

freeways with real-time loop detector data. Accident Analysis & Prevention 57, 30-39. 

 

US census bureau, 2013. http://www.census.gov/compendia/statab/2012/tables/12s1103.pdf. 

 

Wang, Y., & Witten, I. H., 1997. Inducing model trees for continuous classes. In Proceedings of 

the Ninth European Conference on Machine Learning (pp. 128-137). 

 

Wei, C. H., & Lee, Y., 2007. Sequential forecast of incident duration using Artificial Neural 

Network models. Accident Analysis & Prevention, 39(5), 944-954.  

 



 

61 
 

Ye, Y., Wu, Q., Zhexue Huang, J., Ng, M. K., & Li, X., 2013. Stratified sampling for feature 

subspace selection in random forests for high dimensional data. Pattern Recognition 46(3), 769-

787. 

 

Yu, R., & Abdel-Aty, M., 2013. Utilizing support vector machine in real-time crash risk 

evaluation. Accident Analysis & Prevention 51, 252-259. 

 

 

Zhan, C., Gan, A., & Hadi, M., 2011. Prediction of lane clearance time of freeway incidents 

using the M5P tree algorithm. IEEE Transactions on Intelligent Transportation Systems, 12(4), 

1549-1557.  

 

Zheng, Z., Ahn, S., & Monsere, C. M., 2010. Impact of traffic oscillations on freeway crash 

occurrences. Accident Analysis & Prevention 42(2), 626-636. 

 

 


	Structure Bookmarks
	 
	 
	Figure
	Link
	Span


	 
	 
	 
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	FINAL REPORT 
	 
	Novel Machine Learning Methods for Accident Data Analysis 
	Date of report: January 2019 
	 
	Lei Lin, Ph.D.  
	Graduate Research Assistant, University at Buffalo 
	Research Scientist, Goergen Institute for Data Science at the University of Rochester  
	Qian Wang, Ph.D.  
	Teaching Assistant Professor, University at Buffalo 
	Adel W. Sadek, Ph.D. 
	Span
	Professor, University at Buffalo 
	Span
	𝑖𝑙,𝑝
	𝑖𝑙,𝑝
	𝑖𝑙,𝑝
	: 
	𝑓𝑙,𝑝
	 


	Span
	Span
	Span
	𝑖𝑛−𝑘+1,2
	𝑖𝑛−𝑘+1,2
	𝑖𝑛−𝑘+1,2
	: 
	𝑓𝑛−𝑘+1,2
	 


	Span
	Span
	Span
	Span
	F
	F
	F
	requent pattern 
	𝑝1
	 


	Span
	F
	F
	F
	requent pattern 
	𝑝2
	 


	Director, Transportation Informatics University Transportation Center  
	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	…
	…
	…
	 


	Span
	F
	F
	F
	requent pattern 
	𝑝𝑞
	 

	 
	 


	Span
	F
	F
	F
	requent pattern 
	𝑝𝑄
	 

	 
	 
	 


	Span
	Span
	Associate Director, Institute for Sustainable Transportation & Logistics 
	Prepared by: 
	Department of Civil, Structural & Environmental Engineering, Univ. at Buffalo 
	Span
	Traffic Accident
	Traffic Accident
	Traffic Accident
	 


	Span
	Span
	Span
	10
	10
	10
	-
	minute
	 


	 
	Prepared for: 
	Transportation Informatics Tier I University Transportation Center 
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Incident 
	Incident 
	Incident 
	 

	Detection
	Detection
	 


	Span
	204 Ketter Hall 
	Span
	Incident 
	Incident 
	Incident 
	 

	Verification
	Verification
	 


	Span
	Incident 
	Incident 
	Incident 
	 

	Response
	Response
	 


	Span
	Incident 
	Incident 
	Incident 
	 

	Clearance
	Clearance
	 


	Span
	Incident 
	Incident 
	Incident 
	 

	Recovery
	Recovery
	 


	Span
	Cle
	Cle
	Cle
	arance
	 

	Time
	Time
	 


	Span
	“
	“
	“
	Accident Duration” 
	 

	in this Study
	in this Study
	 


	University at Buffalo 
	Span
	Accidents
	Accidents
	Accidents
	 


	Span
	Vehicle 
	Vehicle 
	Vehicle 
	 

	Breakdown
	Breakdown
	 

	 
	 


	Span
	Spilled 
	Spilled 
	Spilled 
	Loads
	 

	 
	 


	Span
	Incidents
	Incidents
	Incidents
	 


	Buffalo, NY 14260 
	Table
	TBody
	TR
	Span
	1. Report No. 
	1. Report No. 
	 
	 

	2. Government Accession No. 
	2. Government Accession No. 

	3. Recipient’s Catalog No. 
	3. Recipient’s Catalog No. 


	TR
	Span
	4. Title and Subtitle 
	4. Title and Subtitle 
	Novel Machine Learning Methods for Accident Data Analysis 
	 

	5. Report Date 
	5. Report Date 
	 
	January 2018 


	TR
	Span
	6. Performing Organization Code 
	6. Performing Organization Code 


	TR
	Span
	7. Author(s) 
	7. Author(s) 
	Lei Lin & Adel W. Sadek 

	8. Performing Organization Report No. 
	8. Performing Organization Report No. 
	  


	TR
	Span
	9. Performing Organization Name and Address 
	9. Performing Organization Name and Address 
	Department of Civil, Structural and Environmental Engineering 
	University at Buffalo 
	204 Ketter Hall 
	Buffalo, NY 14260 
	  

	10. Work Unit No. (TRAIS 
	10. Work Unit No. (TRAIS 


	TR
	Span
	11. Contract or Grant No.    
	11. Contract or Grant No.    
	     DTRT13-G-UTC48 


	TR
	Span
	12. Sponsoring Agency Name and Address 
	12. Sponsoring Agency Name and Address 
	US Department of Transportation 
	Office of the   
	UTC Program, RDT-30 
	1200 New Jersey Ave., SE 
	Washington, DC 20590 

	13. Type of Report and Period Covered 
	13. Type of Report and Period Covered 
	 
	 Final: June 2014 – January 2018 


	TR
	Span
	14. Sponsoring Agency Code 
	14. Sponsoring Agency Code 
	 


	TR
	Span
	15. Supplementary Notes 
	15. Supplementary Notes 


	TR
	Span
	16. Abstract 
	16. Abstract 
	 
	The field of traffic accident analysis has long been dominated by traditional statistical analysis. With the recent advances in data collection, storage and archival methods, the size of accident datasets has grown significantly. This in turn has motivated research on applying data mining and Machine Learning algorithms, which are specifically designed to handle datasets with large dimensions, to traffic accident analysis. This project explores three specific applications of Data Mining and Machine Learning


	TR
	Span
	17. Key Words 
	17. Key Words 
	Data mining; Complex Network Analysis; Frequent Pattern tree (FP tree); Fuzzy C-means clustering (FCM); Bayesian network; Random forest; M5P Tree; Hazard-based Duration Model. 

	18. Distribution Statement 
	18. Distribution Statement 
	 
	No restrictions. This document is available from the National Technical Information Service, Springfield, VA 22161 


	TR
	Span
	19. Security Classif. (of this report) 
	19. Security Classif. (of this report) 
	 
	Unclassified 

	20. Security Classif. (of this page) 
	20. Security Classif. (of this page) 
	 
	Unclassified 

	21. No. of Pages 
	21. No. of Pages 
	 
	70 pages 

	22. Price 
	22. Price 




	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	Span
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Insert your own project cover page here 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Acknowledgements 
	 
	The authors would like to acknowledge the Niagara International Transportation Technology Coalition for providing data utilized in this research.  They also would like to acknowledge the Journal of the Transportation Research Board, the Transportation Research – Part C journal, and the Accident Analysis and Prevention journal for publishing the material compiled in this report. 
	 
	Disclaimer 
	The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein.  This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange.  The U.S. Government assumes no liability for the contents or use thereof. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	TABLE OF CONTENTS 
	TABLE OF CONTENTS 
	 
	INTRODUCTION 
	INTRODUCTION 
	INTRODUCTION 

	................................................................................................
	.............. 1
	 

	DATA MINING AND COMPLEX NETWORK ALGORITHMS FOR TRAFFIC ACCIDENT ANALYSIS 
	DATA MINING AND COMPLEX NETWORK ALGORITHMS FOR TRAFFIC ACCIDENT ANALYSIS 
	DATA MINING AND COMPLEX NETWORK ALGORITHMS FOR TRAFFIC ACCIDENT ANALYSIS 

	................................................................................................
	......................... 1
	 

	BACKGROUND 
	BACKGROUND 
	BACKGROUND 

	................................................................................................
	......................... 2
	 

	Clustering and Data Heterogeneity 
	Clustering and Data Heterogeneity 
	Clustering and Data Heterogeneity 

	................................................................
	......................... 2
	 

	Modularity Optimization Community Detection Method 
	Modularity Optimization Community Detection Method 
	Modularity Optimization Community Detection Method 

	................................
	......................... 2
	 

	Discerning Relationships between Crash Involvement and Risk/Causative Factors .............. 3
	Discerning Relationships between Crash Involvement and Risk/Causative Factors .............. 3
	Discerning Relationships between Crash Involvement and Risk/Causative Factors .............. 3

	 

	METHODOLOGY 
	METHODOLOGY 
	METHODOLOGY 

	................................................................................................
	...................... 3
	 

	Clustering Analysis 
	Clustering Analysis 
	Clustering Analysis 

	................................................................................................
	.................. 3
	 

	Association Rule Learning 
	Association Rule Learning 
	Association Rule Learning 

	................................................................................................
	....... 4
	 

	DATA PROCESSING 
	DATA PROCESSING 
	DATA PROCESSING 

	................................................................................................
	................. 5
	 

	RESULTS 
	RESULTS 
	RESULTS 

	................................................................................................................................
	.... 6
	 

	Community Detection 
	Community Detection 
	Community Detection 

	................................................................................................
	............... 6
	 

	Association Rule Analysis to Identify Hotspots 
	Association Rule Analysis to Identify Hotspots 
	Association Rule Analysis to Identify Hotspots 

	................................................................
	........ 9
	 

	Association Rule Analysis to Identify Factors Affecting Incident Clearance Time ............... 12
	Association Rule Analysis to Identify Factors Affecting Incident Clearance Time ............... 12
	Association Rule Analysis to Identify Factors Affecting Incident Clearance Time ............... 12

	 

	CONCLUSIONS 
	CONCLUSIONS 
	CONCLUSIONS 

	................................................................................................
	....................... 14
	 

	A NOVEL VARIABLE SELECTION METHOD BASED ON FREQUENT PATTERN TREE FOR REAL-TIME TRAFFIC ACCIDENT RISK PREDICTION 
	A NOVEL VARIABLE SELECTION METHOD BASED ON FREQUENT PATTERN TREE FOR REAL-TIME TRAFFIC ACCIDENT RISK PREDICTION 
	A NOVEL VARIABLE SELECTION METHOD BASED ON FREQUENT PATTERN TREE FOR REAL-TIME TRAFFIC ACCIDENT RISK PREDICTION 

	................................
	... 16
	 

	MODEL METHODOLOGY 
	MODEL METHODOLOGY 
	MODEL METHODOLOGY 

	................................................................................................
	..... 17
	 

	Frequent-pattern tree (FP-tree) 
	Frequent-pattern tree (FP-tree) 
	Frequent-pattern tree (FP-tree) 

	................................................................
	............................. 17
	 

	Random forest 
	Random forest 
	Random forest 

	................................................................................................
	........................ 21
	 

	k nearest neighbor (k-NN) 
	k nearest neighbor (k-NN) 
	k nearest neighbor (k-NN) 

	................................................................................................
	...... 22
	 

	Bayesian network 
	Bayesian network 
	Bayesian network 

	................................................................................................
	................... 22
	 

	MODELING DATASET 
	MODELING DATASET 
	MODELING DATASET 

	................................................................................................
	........... 22
	 

	MODEL DEVELOPMENT AND RESULTS 
	MODEL DEVELOPMENT AND RESULTS 
	MODEL DEVELOPMENT AND RESULTS 

	................................................................
	........... 25
	 

	Variable importance calculation 
	Variable importance calculation 
	Variable importance calculation 

	................................................................
	............................ 25
	 

	k-NN 
	k-NN 
	k-NN 

	................................................................................................................................
	....... 27
	 

	Bayesian network 
	Bayesian network 
	Bayesian network 

	................................................................................................
	................... 29
	 

	CONCLUSIONS AND FUTURE WORK 
	CONCLUSIONS AND FUTURE WORK 
	CONCLUSIONS AND FUTURE WORK 

	................................................................
	................ 32
	 

	A COMBINED M5P TREE AND HAZARD-BASED DURATION MODEL FOR PREDICTING URBAN FREEWAY TRAFFIC ACCIDENT DURATIONS ................. 34
	A COMBINED M5P TREE AND HAZARD-BASED DURATION MODEL FOR PREDICTING URBAN FREEWAY TRAFFIC ACCIDENT DURATIONS ................. 34
	A COMBINED M5P TREE AND HAZARD-BASED DURATION MODEL FOR PREDICTING URBAN FREEWAY TRAFFIC ACCIDENT DURATIONS ................. 34

	 

	PREVIOUS RESEARCH ON INCIDENT DURATION PREDICTION 
	PREVIOUS RESEARCH ON INCIDENT DURATION PREDICTION 
	PREVIOUS RESEARCH ON INCIDENT DURATION PREDICTION 

	................................
	. 35
	 

	Traffic Accident Duration Analysis 
	Traffic Accident Duration Analysis 
	Traffic Accident Duration Analysis 

	................................................................
	........................ 35
	 

	Data Heterogeneity 
	Data Heterogeneity 
	Data Heterogeneity 

	................................................................................................
	................ 36
	 

	METHODOLOGY 
	METHODOLOGY 
	METHODOLOGY 

	................................................................................................
	.................... 36
	 

	M5P Tree Algorithm
	M5P Tree Algorithm
	M5P Tree Algorithm

	................................................................................................
	............... 37
	 

	Hazard-based Duration Model 
	Hazard-based Duration Model 
	Hazard-based Duration Model 

	................................................................
	.............................. 38
	 


	M5P-HBDM Model 
	M5P-HBDM Model 
	M5P-HBDM Model 
	M5P-HBDM Model 

	................................................................................................
	................ 40
	 

	MODELING DATASETS 
	MODELING DATASETS 
	MODELING DATASETS 

	................................................................................................
	......... 40
	 

	Virginia Traffic Accident Dataset 
	Virginia Traffic Accident Dataset 
	Virginia Traffic Accident Dataset 

	................................................................
	.......................... 40
	 

	Buffalo-Niagara Traffic Accident Dataset 
	Buffalo-Niagara Traffic Accident Dataset 
	Buffalo-Niagara Traffic Accident Dataset 

	................................................................
	............. 42
	 

	MODEL DEVELOPMENT 
	MODEL DEVELOPMENT 
	MODEL DEVELOPMENT 

	................................................................................................
	....... 43
	 

	M5P Tree 
	M5P Tree 
	M5P Tree 

	................................................................................................................................
	 43
	 

	Hazard-based Duration Model 
	Hazard-based Duration Model 
	Hazard-based Duration Model 

	................................................................
	.............................. 47
	 

	M5P-HBDM model 
	M5P-HBDM model 
	M5P-HBDM model 

	................................................................................................
	................ 48
	 

	MODEL COMPARISON 
	MODEL COMPARISON 
	MODEL COMPARISON 

	................................................................................................
	.......... 51
	 

	Significant Independent Variables Comparison 
	Significant Independent Variables Comparison 
	Significant Independent Variables Comparison 

	................................................................
	.... 51
	 

	Accident Duration Prediction Comparison 
	Accident Duration Prediction Comparison 
	Accident Duration Prediction Comparison 

	................................................................
	........... 52
	 

	CONCLUSIONS AND FUTURE WORK 
	CONCLUSIONS AND FUTURE WORK 
	CONCLUSIONS AND FUTURE WORK 

	................................................................
	................ 53
	 

	REFERENCES 
	REFERENCES 
	REFERENCES 

	................................................................................................
	................. 54
	 

	 

	  
	 
	LIST OF FIGURES 
	 
	 
	Figure 1. Resulting traffic accidents network and community detection . 
	Figure 1. Resulting traffic accidents network and community detection . 
	Figure 1. Resulting traffic accidents network and community detection . 

	................................
	..... 8
	 

	Figure 2. Frequent pattern (FP) tree. 
	Figure 2. Frequent pattern (FP) tree. 
	Figure 2. Frequent pattern (FP) tree. 

	................................................................
	............................. 18
	 

	Figure 3. Flow chart of variable selection method based on FP tree 
	Figure 3. Flow chart of variable selection method based on FP tree 
	Figure 3. Flow chart of variable selection method based on FP tree 

	................................
	............ 19
	 

	Figure 4. Part of I-64 in Norfolk, Virginia.
	Figure 4. Part of I-64 in Norfolk, Virginia.
	Figure 4. Part of I-64 in Norfolk, Virginia.

	................................................................
	................... 23
	 

	Figure 5. Temporal settings of pre-crash and normal traffic conditions
	Figure 5. Temporal settings of pre-crash and normal traffic conditions
	Figure 5. Temporal settings of pre-crash and normal traffic conditions

	................................
	....... 24
	 

	Figure 6. Performance of k-NN for different variable selection 
	Figure 6. Performance of k-NN for different variable selection 
	Figure 6. Performance of k-NN for different variable selection 

	................................
	................... 28
	 

	Figure 7. Bayesian network Performance with different variable selection strategies. ................ 30
	Figure 7. Bayesian network Performance with different variable selection strategies. ................ 30
	Figure 7. Bayesian network Performance with different variable selection strategies. ................ 30

	 

	Figure 8. Traffic incident management process and accident duration definition ........................ 34
	Figure 8. Traffic incident management process and accident duration definition ........................ 34
	Figure 8. Traffic incident management process and accident duration definition ........................ 34

	 

	Figure 9. M5P tree model for I-64 training dataset. 
	Figure 9. M5P tree model for I-64 training dataset. 
	Figure 9. M5P tree model for I-64 training dataset. 

	................................................................
	..... 44
	 

	Figure 10. M5P tree model for I-190 training dataset. 
	Figure 10. M5P tree model for I-190 training dataset. 
	Figure 10. M5P tree model for I-190 training dataset. 

	................................................................
	. 46
	 

	Figure 11. M5P-HBDM model for I-64 training dataset. 
	Figure 11. M5P-HBDM model for I-64 training dataset. 
	Figure 11. M5P-HBDM model for I-64 training dataset. 

	................................
	............................. 49
	 

	Figure 12. M5P-HBDM model for I-190 training dataset. 
	Figure 12. M5P-HBDM model for I-190 training dataset. 
	Figure 12. M5P-HBDM model for I-190 training dataset. 

	................................
	........................... 50
	 

	 

	  
	LIST OF TABLES 
	 
	 
	Table 1. Traffic Accident Variables in the I-190 Data 
	Table 1. Traffic Accident Variables in the I-190 Data 
	Table 1. Traffic Accident Variables in the I-190 Data 

	................................................................
	... 6
	 

	Table 2. Network Clusters with Respect to the Similarity Threshold 
	Table 2. Network Clusters with Respect to the Similarity Threshold 
	Table 2. Network Clusters with Respect to the Similarity Threshold 

	................................
	............ 7
	 

	Table 3. Traffic Accident Types 
	Table 3. Traffic Accident Types 
	Table 3. Traffic Accident Types 

	................................................................................................
	..... 9
	 

	Table 4. Rules on Hotspots from the Whole Dataset and the Clusters 
	Table 4. Rules on Hotspots from the Whole Dataset and the Clusters 
	Table 4. Rules on Hotspots from the Whole Dataset and the Clusters 

	................................
	........... 9
	 

	Table 5. Rules on Clearance Time from the Whole Dataset and the Clusters .............................. 12
	Table 5. Rules on Clearance Time from the Whole Dataset and the Clusters .............................. 12
	Table 5. Rules on Clearance Time from the Whole Dataset and the Clusters .............................. 12

	 

	Table 6. Clustering results for 5-minute and 10-minute accident training datasets...................... 25
	Table 6. Clustering results for 5-minute and 10-minute accident training datasets...................... 25
	Table 6. Clustering results for 5-minute and 10-minute accident training datasets...................... 25

	 

	Table 7. Supports of items in 5-minute and 10-minute accident training datasets ....................... 26
	Table 7. Supports of items in 5-minute and 10-minute accident training datasets ....................... 26
	Table 7. Supports of items in 5-minute and 10-minute accident training datasets ....................... 26

	 

	Table 8. Variable importance calculations results based on FP Tree and random forest methods27
	Table 8. Variable importance calculations results based on FP Tree and random forest methods27
	Table 8. Variable importance calculations results based on FP Tree and random forest methods27

	 

	Table 9. Comparison with the previous studies 
	Table 9. Comparison with the previous studies 
	Table 9. Comparison with the previous studies 

	................................................................
	............ 31
	 

	Table 10. Traffic accident variables in I-64 dataset 
	Table 10. Traffic accident variables in I-64 dataset 
	Table 10. Traffic accident variables in I-64 dataset 

	................................................................
	...... 41
	 

	Table 11. Traffic accident variables in I-190 dataset 
	Table 11. Traffic accident variables in I-190 dataset 
	Table 11. Traffic accident variables in I-190 dataset 

	................................................................
	.... 42
	 

	Table 12. AIC values of HBDMs for I-64 and I-190 training datasets
	Table 12. AIC values of HBDMs for I-64 and I-190 training datasets
	Table 12. AIC values of HBDMs for I-64 and I-190 training datasets

	................................
	......... 47
	 

	Table 13. Log-normal AFT models on I-64 training dataset 
	Table 13. Log-normal AFT models on I-64 training dataset 
	Table 13. Log-normal AFT models on I-64 training dataset 

	................................
	........................ 48
	 

	Table 14. Log-normal AFT models on I-190 training dataset 
	Table 14. Log-normal AFT models on I-190 training dataset 
	Table 14. Log-normal AFT models on I-190 training dataset 

	................................
	...................... 48
	 

	Table 15.  Log-normal AFT models in M5P-HBDM of I-64 training dataset ............................. 49
	Table 15.  Log-normal AFT models in M5P-HBDM of I-64 training dataset ............................. 49
	Table 15.  Log-normal AFT models in M5P-HBDM of I-64 training dataset ............................. 49

	 

	Table 16. Log-normal AFT models in M5P-HBDM of I-190 training dataset ............................ 50
	Table 16. Log-normal AFT models in M5P-HBDM of I-190 training dataset ............................ 50
	Table 16. Log-normal AFT models in M5P-HBDM of I-190 training dataset ............................ 50

	 

	Table 17. Significant variables in M5P, HBDM and M5P-HBDM of I-64 training dataset ........ 51
	Table 17. Significant variables in M5P, HBDM and M5P-HBDM of I-64 training dataset ........ 51
	Table 17. Significant variables in M5P, HBDM and M5P-HBDM of I-64 training dataset ........ 51

	 

	Table 18. Significant variables in M5P, HBDM and M5P-HBDM of I-190 training dataset ...... 52
	Table 18. Significant variables in M5P, HBDM and M5P-HBDM of I-190 training dataset ...... 52
	Table 18. Significant variables in M5P, HBDM and M5P-HBDM of I-190 training dataset ...... 52

	 

	Table 19.  MAPEs of M5P tree, HBDM model and M5P-HBDM model 
	Table 19.  MAPEs of M5P tree, HBDM model and M5P-HBDM model 
	Table 19.  MAPEs of M5P tree, HBDM model and M5P-HBDM model 

	................................
	.... 53
	 

	 

	  
	EXECUTIVE SUMMARY 
	The field of traffic accident analysis has long been dominated by traditional statistical analysis. With the recent advances in data collection, storage and archival methods, the size of accident datasets has grown significantly. This in turn has motivated research on applying data mining and Machine Learning algorithms, which are specifically designed to handle datasets with large dimensions, to traffic accident analysis. This project explores three specific applications of Data Mining and Machine Learning
	 
	The first application explores the potential for using a modularity-optimizing community detection algorithm and association rules learning algorithm, to identify important accident characteristics.  As a case study, the algorithms are applied to an accident dataset compiled for Interstate 190 in the Buffalo-Niagara metropolitan area.  Specifically, the community detection algorithm is used first to cluster the data in order to reduce the inherent heterogeneity, and then the association rule learning algori
	 
	The second application focuses on the development of models for the real-time prediction of traffic accident risk.  The data required for the development of such models are usually complex, noisy, and even misleading.  This raises the question of how to select the most important explanatory variables to achieve an acceptable level of accuracy for real-time traffic accident risk prediction. To address this, the project proposes a novel Frequent Pattern tree (FP tree) based variable selection method. The meth
	 
	The third application develops models for predicting incident duration, based on the M5P algorithm.  M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a “time-to-an-event” is almost certainly no
	 
	Key Words: Data mining; Complex Network Analysis; Frequent Pattern tree (FP tree); Fuzzy C-means clustering (FCM); Bayesian network; Random forest; M5P Tree; Hazard-based Duration Model. 
	 
	 
	INTRODUCTION 
	Given the enormous societal cost of traffic accidents, the transportation community has consistently been interested in accident analysis methods to reveal patterns, identify causative factors, and suggest countermeasures. The field of traffic accident analysis, however, has for long been dominated by traditional statistical analysis methods which over the years have yielded invaluable insight and helped guide policy. With the recent advances in data collection, storage and archival methods, the size of acc
	 
	This project explores three specific applications of Data Mining and Machine Learning algorithms to traffic accident analysis. The first application explores the potential for using a modularity-optimizing community detection algorithm and association rules learning algorithm, to identify important accident characteristics.  The second application proposes a novel Frequent Pattern tree (FP tree) based variable selection method, and then develops models for the real-time prediction of traffic accident risk. 
	 
	Besides the Introduction and the Conclusions section, this report is divided into three major sections, each dedicated to discussing one of the three applications studied in this project, namely: (1) the application of Data Mining and Complex Network Algorithms for Traffic Accident Analysis; (2) the use of a novel variable selection method based on Frequent Pattern Tree for real-time traffic accident risk prediction; and (3) the development of a combined M5P Tree and Hazard-based Duration Model for predicti
	 
	DATA MINING AND COMPLEX NETWORK ALGORITHMS FOR TRAFFIC ACCIDENT ANALYSIS 
	This section, which is based on Lin et al. (2014), is organized as follows. First, background information on clustering, complex networks analysis techniques, and on the methods used to extract the relationship between crash involvement and risk factors, is provided. The study’s methodology is then described including a description of: (1) how the modularity optimization algorithm for community detection was applied to cluster the data; (2) the association rule data mining method; and (3) the characteristic
	  
	BACKGROUND 
	Clustering and Data Heterogeneity 
	Several researchers have recently pointed out that heterogeneity inherent in traffic accident data often prevents the further exploration of these data (Savolainen et al., 2011; Depaire et al., 2008). To deal with the issue, random effects and random parameters models have been proposed for traffic accident data analysis (Karlaftis et al., 1998; Miaou et al., 2003). Such models capture the unobserved heterogeneity by using random error terms and allow each estimated parameter of the model to vary across eac
	 
	In traffic accidents studies, the two most widely used clustering techniques are: (1) the latent class clustering (LCC); and (2) the K-means clustering method.  On one hand, LCC has the advantages of being able to provide statistical criteria for deciding the number of clusters, and to calculate the probabilities for the new data points to belonging to a given cluster (Depaire et al., 2008; de Oña et al., 2013). On the other hand, LCC heavily relies on the assumption of local independence among traffic acci
	 
	Modularity Optimization Community Detection Method 
	Recently, complex network analysis methods have been intensively used to understand the features of complex systems such as biological, social, technological and information networks. In the analysis, communities, also called clusters or modules, denote groups of system components that probably share common properties and/or play similar roles in graphs (Fortunato, 2010). For example, for a Facebook social network, communities represent people who share common interests, and therefore exploiting the affilia
	 
	The modularity optimization method is one of the most popular methods used for community detection in graph and network analysis (Fortunato, 2010). Its premise is that the network is divided the best when the modularity (i.e., the degree to which a system's components may be 
	divided) is maximized.  Due to the generality of the method, the concept of modularity optimization can be applied to traffic accident clustering, by representing each accident record as one node in the network (analogous to a person in a social network).   
	 
	Discerning Relationships between Crash Involvement and Risk/Causative Factors 
	For traffic accidents analysis, many statistical, non-parametric and data mining methods have been previously used, with or without clustering, to identify hotspots and to extract relationships between crash involvement and risk factors. As for hotspots, various approaches have been used to define and detect hotspots (Anderson, 2009). Some studies defined hotspots (or black spots) as geographical locations with highly concentrated traffic accidents (Geurts, 2003: Xie & Yan, 2008), while some others detected
	 
	METHODOLOGY  
	Suppose the accident dataset contains 𝑁 records, each of which contains information about a set of variables 𝐴={𝑐1,𝑐2,…𝑐𝑚,𝑎1,𝑎2,…𝑎𝑛}. We divide those variables intro two groups: (1) the 𝑐𝑙 variables,  1≤𝑙≤𝑚, which represents the causative factors behind the accident such as time of day, weather conditions, road geometric features (e.g. number of lanes), etc.; and (2) the accident attributes, 𝑎𝑘, 1≤𝑘≤𝑛, which represents the specific characteristics of a crash such as associated injuries, lo
	 
	Clustering Analysis 
	This study used the community detection algorithm, for the first time, to cluster the data and reduce heterogeneity.  The first step was to represent the data in the form of the network by treating each accident record as one vertex in the network (similar to a friend in a Facebook network). Then, the problem becomes to find out how these vertices are connected in the network. Because in this study the objective is to find out how causative factors contribute to the outcome (i.e. the accident characteristic
	 
	According to the algorithm, two vertices (i.e. two accidents) 𝑖 and 𝑗, 1≤𝑖,𝑗≤𝑁,𝑖≠𝑗 will be connected if the following condition is satisfied: 
	 
	∑𝒆𝒍≥𝒆𝒕𝒉𝟏≤𝒍≤𝒎,          Equation 1 
	 
	Where 𝑒𝑙=1, if the values of the factor 𝑐𝑙 of 𝑖 and 𝑗 are the same, otherwise 𝑒𝑙=0, and 𝑒𝑡ℎ is the similarity threshold defined by the user (i.e. this counts how many attributes are similar). If the two vertices 𝑖 and 𝑗 are connected, an undirected edge is drawn between them, and the weight of the edge can be calculated as: 
	 
	𝑾𝒊𝒋=∑𝒆𝒍𝟏≤𝒍≤𝒎𝒎,         Equation 2 
	  
	Following the network formation, the community detection algorithm is applied to divide it into clusters so that each vertex belongs to only one cluster. The most popular quality function of a partition is the modularity of Newman and Girvan (22), which can be calculated as following: 
	 
	𝑸=𝟏𝟐𝑻∑[𝑾𝒊𝒋−𝒇𝒊𝒇𝒋𝟐𝑻]𝜹(𝒐𝒊,𝒊,𝒋𝒐𝒋),        Equation 3 
	 
	Where 𝑊𝑖𝑗 represents the weight of the edge between vertex 𝑖 and 𝑗; 𝑓𝑖=∑𝑊𝑖𝑗𝑗 is the summation of the weights for the edges attached to vertex 𝑖; 𝑜𝑖 is the index of community or cluster vertex 𝑖 is assigned to in a given iteration, and 𝛿(𝑜𝑖,𝑜𝑗)=1, if 𝑜𝑖=𝑜𝑗, otherwise 𝛿(𝑜𝑖,𝑜𝑗)=0; and 𝑇=12∑𝑊𝑖𝑗𝑖,𝑗. As defined above, the modularity basically reflects the concentration of vertices within communities compared with random distribution of edges between all vertices regardless of co
	 
	 As compared to traditional clustering techniques such as LCC and K-means clustering, the community identification algorithm offers several advantages.  First, the network transformation and the modularity optimization method are intuitive and easy to implement. Second, when building the network, because the causative factors are compared one by one and because there is no distance measure involved, as is the case with other techniques such as K-means, there is no need to normalize the data (which often int
	 
	Association Rule Learning  
	The concepts of association rules learning were firstly introduced by Agrawal et al., 1993. Given a traffic accident related variable set 𝐴={𝑐1,𝑐2,…𝑐𝑚,𝑎1,𝑎2,…𝑎𝑛}, it can be transformed to a 
	set of binary attributes called items 𝐼={𝐼1𝑐,𝐼2𝑐,…𝐼𝐿𝑐,𝐼1𝑎,𝐼2𝑎,…𝐼𝐾𝑎}, where 𝐼𝑙𝑐, 1≤𝑙≤𝐿 are the binary attributes associated with the causative factors, and 𝐼𝑘𝑎, 1≤𝑘≤𝐾 are the binary variables related to accident attributes (i.e. the outcome). For example, the factor “Season” can be represented by four binary attributes, i.e., “spring”, “summer”, “autumn”, and “winter”. Each of the 𝑁 accident records, referred to here as transactions T, has a unique transaction ID and is a subset of 
	set of binary attributes called items 𝐼={𝐼1𝑐,𝐼2𝑐,…𝐼𝐿𝑐,𝐼1𝑎,𝐼2𝑎,…𝐼𝐾𝑎}, where 𝐼𝑙𝑐, 1≤𝑙≤𝐿 are the binary attributes associated with the causative factors, and 𝐼𝑘𝑎, 1≤𝑘≤𝐾 are the binary variables related to accident attributes (i.e. the outcome). For example, the factor “Season” can be represented by four binary attributes, i.e., “spring”, “summer”, “autumn”, and “winter”. Each of the 𝑁 accident records, referred to here as transactions T, has a unique transaction ID and is a subset of 
	, where 𝑋 and 𝑌 are sets of items in 𝐼, 
	, 
	 and 
	.The sets of items 
	and 
	 are called the body and head of the rules, respectively. 
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	 At a very high level, generating the association rules involves two basic steps. The first is to generate the frequent item sets in the data. 𝑋 is called a frequent item set when its support, which refers to the frequency at which 𝑋 appeared in the 𝑁 transactions, is equal to or greater than the minimum support defined by user. 
	 
	𝒔𝒖𝒑𝒑{𝑿}𝑵≥𝝈,           Equation 4 
	 Where 𝑠𝑢𝑝𝑝{𝑋} is the number of transactions in 𝑁 that contains item set 𝑋, and 𝜎 is the minimum support.  
	 
	 Now suppose item sets 𝑋 and 𝑋∪𝑌 are frequent item sets, the second step is to calculate the confidence of 
	 Now suppose item sets 𝑋 and 𝑋∪𝑌 are frequent item sets, the second step is to calculate the confidence of 
	.  This is based on the ratio of the number of transactions that contains 𝑋∪𝑌 to transactions that only contains 𝑋. If the confidence is equal to or higher than the user-defined minimum confidence, 
	is an association rule. 
	InlineShape
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	 Where 𝜀 is the minimum confidence.  Methods are then available to distinguish between the trivial and non-trivial rules (Geurts et al., 2003). 
	 
	DATA PROCESSING 
	The dataset used in this study included 999 traffic accidents observed at I-190 from 01/01/2008 to 10/31/2012. I-190 runs 28.34 miles (45.61 km) from its intersection with I-90 near Buffalo, NY up north to Lewiston, NY via Niagara Falls. I-190 plays a critical role in the Buffalo-Niagara transportation network, especially in terms of connecting Western New York to Southern Ontario, Canada. Incidents and traffic flow are monitored by the Niagara International Transportation Technology Coalition (NITTEC), whi
	The dataset used in this study included 999 traffic accidents observed at I-190 from 01/01/2008 to 10/31/2012. I-190 runs 28.34 miles (45.61 km) from its intersection with I-90 near Buffalo, NY up north to Lewiston, NY via Niagara Falls. I-190 plays a critical role in the Buffalo-Niagara transportation network, especially in terms of connecting Western New York to Southern Ontario, Canada. Incidents and traffic flow are monitored by the Niagara International Transportation Technology Coalition (NITTEC), whi
	Table 1
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	.  The variables that were excluded did not exhibit enough variation over the dataset compiled (i.e., more than 95% of the records had the same value for the variable). 

	  
	Table 1. Traffic Accident Variables in the I-190 Data 
	 
	Table
	TBody
	TR
	Span
	Variables 
	Variables 

	Values 
	Values 

	Included 
	Included 


	TR
	Span
	Causative Factors  
	Causative Factors  


	TR
	Span
	Season 
	Season 

	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 
	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 

	Yes 
	Yes 


	TR
	Span
	Weekday 
	Weekday 

	Yes (Monday 2 AM-Friday 9 PM, except holidays); no  
	Yes (Monday 2 AM-Friday 9 PM, except holidays); no  

	Yes 
	Yes 


	TR
	Span
	Hour of the Day 
	Hour of the Day 

	morning (7 AM-9 AM); early afternoon (10 AM-12 Noon); afternoon (1 PM-3 PM); evening rush (4 PM-6 PM); evening (7 PM-9 PM); night (10 PM-6 AM) 
	morning (7 AM-9 AM); early afternoon (10 AM-12 Noon); afternoon (1 PM-3 PM); evening rush (4 PM-6 PM); evening (7 PM-9 PM); night (10 PM-6 AM) 

	Yes 
	Yes 


	TR
	Span
	Wind Speed 
	Wind Speed 

	0 mph (miles per hour); 10 mph; 20 mph; 30 mph 
	0 mph (miles per hour); 10 mph; 20 mph; 30 mph 

	Yes 
	Yes 


	TR
	Span
	Weather Conditions 
	Weather Conditions 

	clear; rain; snow 
	clear; rain; snow 

	Yes 
	Yes 


	TR
	Span
	Direction  
	Direction  

	North; South 
	North; South 

	Yes 
	Yes 


	TR
	Span
	Lane Number on Main Road 
	Lane Number on Main Road 

	1; 2; 3 
	1; 2; 3 

	Yes 
	Yes 


	TR
	Span
	Lane Number on Ramp 
	Lane Number on Ramp 

	0 (away from exit); 1; 2; 
	0 (away from exit); 1; 2; 

	Yes 
	Yes 


	TR
	Span
	Ramp Type 
	Ramp Type 

	on ramp; off ramp; highway to highway on ramp; highway to highway off ramp;  
	on ramp; off ramp; highway to highway on ramp; highway to highway off ramp;  

	Yes 
	Yes 


	TR
	Span
	Vehicle Type 
	Vehicle Type 

	Car; Truck/Tractor Trailer; Motorcycle 
	Car; Truck/Tractor Trailer; Motorcycle 

	No 
	No 


	TR
	Span
	Accident Attributes:  
	Accident Attributes:  


	TR
	Span
	Location – Exit Number 
	Location – Exit Number 

	Exit 1; …; Exit 25; Highway 
	Exit 1; …; Exit 25; Highway 

	Yes 
	Yes 


	TR
	Span
	Location relative to  
	Location relative to  
	Road Configuration 

	Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before the bridge; after the bridge 
	Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before the bridge; after the bridge 

	Yes 
	Yes 


	TR
	Span
	Number of Vehicles Involved 
	Number of Vehicles Involved 

	1; 2; more than 2 
	1; 2; more than 2 

	Yes 
	Yes 


	TR
	Span
	Clearance Time 
	Clearance Time 

	0-15minutes; 16-30 minutes; 31-45 minutes; 46-60 minutes; 61-75 minutes; 76-90 minutes; more than 90 minutes 
	0-15minutes; 16-30 minutes; 31-45 minutes; 46-60 minutes; 61-75 minutes; 76-90 minutes; more than 90 minutes 

	Yes 
	Yes 


	TR
	Span
	Blocked Lane Index 
	Blocked Lane Index 

	left lane at main road; middle lane at main road; right lane at main road; all lanes at main road; left lane at ramp; right lane at ramp; all lanes at ramp; 
	left lane at main road; middle lane at main road; right lane at main road; all lanes at main road; left lane at ramp; right lane at ramp; all lanes at ramp; 

	Yes 
	Yes 


	TR
	Span
	Blocked Lane Number 
	Blocked Lane Number 

	one lane at main road; two lanes at main road; three lanes at main road; one lane at ramp; two lanes at ramp  
	one lane at main road; two lanes at main road; three lanes at main road; one lane at ramp; two lanes at ramp  

	Yes 
	Yes 


	TR
	Span
	Injury 
	Injury 

	Yes; No 
	Yes; No 

	No 
	No 


	TR
	Span
	Roll Over 
	Roll Over 

	Yes; No 
	Yes; No 

	No 
	No 


	TR
	Span
	Congestion 
	Congestion 

	Yes; No 
	Yes; No 

	No 
	No 




	 
	RESULTS 
	Community Detection 
	The only parameter that needed to be calibrated was the similarity threshold 𝑒𝑡ℎ, and given that the number of causative variables used for the comparison was 9 (𝑚=9),  the range for that parameter was from 1 to 9.  Furthermore, because 𝑒𝑡ℎ determines the similarity criterion between two accident records, at least more than half of the variables should have the same values.  This further narrowed the range to between 5 and 8 (it also does not make sense to require all 9 parameters to be similar).  Give
	The only parameter that needed to be calibrated was the similarity threshold 𝑒𝑡ℎ, and given that the number of causative variables used for the comparison was 9 (𝑚=9),  the range for that parameter was from 1 to 9.  Furthermore, because 𝑒𝑡ℎ determines the similarity criterion between two accident records, at least more than half of the variables should have the same values.  This further narrowed the range to between 5 and 8 (it also does not make sense to require all 9 parameters to be similar).  Give
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	Table 2. Network Clusters with Respect to the Similarity Threshold 
	 
	Table
	TBody
	TR
	Span
	Resulting Network Characteristics 
	Resulting Network Characteristics 

	𝑒𝑡ℎ=5 
	𝑒𝑡ℎ=5 

	𝑒𝑡ℎ=6 
	𝑒𝑡ℎ=6 

	𝑒𝑡ℎ=7 
	𝑒𝑡ℎ=7 

	𝑒𝑡ℎ=8 
	𝑒𝑡ℎ=8 


	TR
	Span
	Number of vertices 
	Number of vertices 

	999 
	999 

	999 
	999 

	997 
	997 

	930 
	930 


	TR
	Span
	Number of edges 
	Number of edges 

	180,480 
	180,480 

	83,945 
	83,945 

	27,552 
	27,552 

	5,705 
	5,705 


	TR
	Span
	Number of clusters founded  
	Number of clusters founded  

	3 
	3 

	5 
	5 

	8 
	8 

	33 
	33 


	TR
	Span
	Maximum modularity 
	Maximum modularity 

	0.213 
	0.213 

	0.296 
	0.296 

	0.47 
	0.47 

	0.647 
	0.647 




	 
	Causative Factors and Their Probabilities in Each Cluster (%) 
	 
	Table
	TBody
	TR
	Span
	Variable: Value (Environmental Feature) 
	Variable: Value (Environmental Feature) 

	Cluster 
	Cluster 


	TR
	Span
	1 
	1 

	2 
	2 

	3 
	3 

	4 
	4 

	5 
	5 

	6 
	6 

	7 
	7 

	8 
	8 


	TR
	Span
	Season: Winter 
	Season: Winter 

	14 
	14 

	50 
	50 

	21 
	21 

	34 
	34 

	16 
	16 

	45 
	45 

	29 
	29 

	94 
	94 


	TR
	Span
	Weekday: Yes 
	Weekday: Yes 

	99 
	99 

	95 
	95 

	0 
	0 

	66 
	66 

	54 
	54 

	73 
	73 

	73 
	73 

	70 
	70 


	TR
	Span
	Weekday: No 
	Weekday: No 

	1 
	1 

	5 
	5 

	100 
	100 

	34 
	34 

	46 
	46 

	27 
	27 

	27 
	27 

	30 
	30 


	TR
	Span
	Weather Conditions: Clear 
	Weather Conditions: Clear 

	80 
	80 

	70 
	70 

	84 
	84 

	65 
	65 

	85 
	85 

	44 
	44 

	73 
	73 

	0 
	0 


	TR
	Span
	Weather Conditions: Snow 
	Weather Conditions: Snow 

	1 
	1 

	16 
	16 

	5 
	5 

	24 
	24 

	0 
	0 

	31 
	31 

	14 
	14 

	100 
	100 


	TR
	Span
	Direction: South 
	Direction: South 

	99 
	99 

	0 
	0 

	60 
	60 

	55 
	55 

	100 
	100 

	88 
	88 

	0 
	0 

	98 
	98 


	TR
	Span
	Direction: North 
	Direction: North 

	0 
	0 

	100 
	100 

	40 
	40 

	45 
	45 

	0 
	0 

	12 
	12 

	100 
	100 

	0 
	0 


	TR
	Span
	Lane Number at Main Road: 3 
	Lane Number at Main Road: 3 

	99 
	99 

	98 
	98 

	99 
	99 

	61 
	61 

	0 
	0 

	2 
	2 

	0 
	0 

	74 
	74 


	TR
	Span
	Lane Number on Main Road: 2 
	Lane Number on Main Road: 2 

	0 
	0 

	0 
	0 

	0 
	0 

	37 
	37 

	100 
	100 

	98 
	98 

	99 
	99 

	26 
	26 


	TR
	Span
	Lane Number on Ramp: 1 
	Lane Number on Ramp: 1 

	99 
	99 

	81 
	81 

	90 
	90 

	0 
	0 

	100 
	100 

	15 
	15 

	72 
	72 

	100 
	100 


	TR
	Span
	Lane Number on Ramp: 2 
	Lane Number on Ramp: 2 

	1 
	1 

	19 
	19 

	10 
	10 

	0 
	0 

	0 
	0 

	85 
	85 

	28 
	28 

	0 
	0 


	TR
	Span
	Lane Number on Ramp: 0 
	Lane Number on Ramp: 0 

	0 
	0 

	0 
	0 

	0 
	0 

	100 
	100 

	0 
	0 

	0 
	0 

	0 
	0 

	0 
	0 




	 
	 As can be seen from 
	 As can be seen from 
	Table 2
	Table 2

	, with the increase in the value of the similarity threshold 𝑒𝑡ℎ, the number of edges in the network decreases (since it becomes harder to find similar vertices to connect), and the number of clusters as well as the associated maximum modularity of the network increase. Since modularity represents the concentration of nodes within communities in comparison to the random distribution of edges among nodes regardless of communities, lower 𝑒𝑡ℎ makes the network more randomly connected. Therefore, it is bett
	Figure 1
	Figure 1

	 shows the resulting traffic accident network and the clustering results.  

	  
	Figure 1. Resulting traffic accidents network and community detection (𝒆𝒕𝒉=𝟕). 
	 
	 
	Figure
	 
	 To identify the attributes of each cluster (in terms of describing a given accident type or condition), we followed the method used by Depaire et al. (2008), where the distributions of the variables in each cluster are analyzed to identify the dominant or skewed features (the cluster could then be named based on these features. For example, if 100% of traffic accidents in one cluster happen at non-weekdays, while the other clusters have low probabilities for that feature, we can refer to that cluster as th
	 To identify the attributes of each cluster (in terms of describing a given accident type or condition), we followed the method used by Depaire et al. (2008), where the distributions of the variables in each cluster are analyzed to identify the dominant or skewed features (the cluster could then be named based on these features. For example, if 100% of traffic accidents in one cluster happen at non-weekdays, while the other clusters have low probabilities for that feature, we can refer to that cluster as th
	Table 2
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	 shows the probabilities for each feature within the 8 clusters, where the dominant or skewed feature probabilities are underlined and highlighted.    

	 
	 The probabilities in 
	 The probabilities in 
	Table 2
	Table 2

	 can clearly be used to characterize each cluster.  For example, the first three clusters are all most likely to occur on the highway sections with three lanes at main road (with the occurring probabilities of 99%, 98% and 99%, respectively). Moreover, Cluster 1 and 2 can be claimed as weekday accidents in the southbound and northbound directions of I-190, respectively, while Cluster 3 includes non-weekday accidents only.  All the Cluster 4 accidents (100%) occurred on highway sections away from exits, wher
	Table 3
	Table 3

	. 

	  
	Table 3. Traffic Accident Types 
	Table
	TBody
	TR
	Span
	Cluster 
	Cluster 

	Traffic accident types 
	Traffic accident types 

	Size (%) 
	Size (%) 


	TR
	Span
	1 
	1 

	Traffic accidents on southbound sections with three lanes at main road on weekdays 
	Traffic accidents on southbound sections with three lanes at main road on weekdays 

	17 
	17 


	TR
	Span
	2 
	2 

	Traffic accidents on northbound sections with three lanes at main road on weekdays 
	Traffic accidents on northbound sections with three lanes at main road on weekdays 

	10 
	10 


	TR
	Span
	3 
	3 

	Traffic accidents on sections with three lanes at main road on non-weekdays 
	Traffic accidents on sections with three lanes at main road on non-weekdays 

	11 
	11 


	TR
	Span
	4 
	4 

	Traffic accidents on sections away from exits 
	Traffic accidents on sections away from exits 

	13 
	13 


	TR
	Span
	5 
	5 

	Traffic accidents on southbound sections with two lanes at main road and 1 lane at ramp 
	Traffic accidents on southbound sections with two lanes at main road and 1 lane at ramp 

	9 
	9 


	TR
	Span
	6 
	6 

	Traffic accidents on southbound sections with two lanes at main road and two lanes at ramp  
	Traffic accidents on southbound sections with two lanes at main road and two lanes at ramp  

	13 
	13 


	TR
	Span
	7 
	7 

	Traffic accidents on northbound sections with two lanes at main road  
	Traffic accidents on northbound sections with two lanes at main road  

	22 
	22 


	TR
	Span
	8 
	8 

	Traffic accidents on southbound sections with one lane at ramp in snowy days  
	Traffic accidents on southbound sections with one lane at ramp in snowy days  

	5 
	5 




	 
	Association Rule Analysis to Identify Hotspots 
	In this study, for the association rule analysis, a “hotspot” is defined as the place where the ratio of the number of accidents at that particular spot, to the number of accidents on the whole transportation system under consideration is greater than the minimum support 𝜎, under the conditions defined by the body of an association rule.  In order to identify accident hotspots and the characteristics of accidents that occur there, the association rule analysis algorithm was then run using the 9 causative f
	In this study, for the association rule analysis, a “hotspot” is defined as the place where the ratio of the number of accidents at that particular spot, to the number of accidents on the whole transportation system under consideration is greater than the minimum support 𝜎, under the conditions defined by the body of an association rule.  In order to identify accident hotspots and the characteristics of accidents that occur there, the association rule analysis algorithm was then run using the 9 causative f
	Table 4
	Table 4

	 which lists the rules that had the highest confidence for a given location, along with a few other rules that provide some insight for the study.  As can be seen, the analysis was performed twice: first, on the whole dataset without clustering, and then on each cluster.  The dominant or skewed features for each cluster, as determined from the previous analysis, are shown in bold.  Finally, the confidence level values shown in parentheses are those that result when the value of one causative factor is pertu

	 
	Table 4. Rules on Hotspots from the Whole Dataset and the Clusters 
	Table
	TBody
	TR
	Span
	Datasets 
	Datasets 

	ID 
	ID 

	Body 
	Body 

	Head 
	Head 

	Confidence 
	Confidence 


	TR
	Span
	Whole Dataset 
	Whole Dataset 

	1 
	1 

	[direction: north]+[lane number at main road: 2]+[ramp type: off ramp] 
	[direction: north]+[lane number at main road: 2]+[ramp type: off ramp] 

	[Exit 9: Peace Bridge] 
	[Exit 9: Peace Bridge] 

	0.67 
	0.67 


	TR
	Span
	2 
	2 

	[lane number at main road: 2]+[lane number at ramp:1]+[ramp type: highway to highway off ramp] 
	[lane number at main road: 2]+[lane number at ramp:1]+[ramp type: highway to highway off ramp] 

	[Exit 11: route 198] 
	[Exit 11: route 198] 

	1 
	1 


	TR
	Span
	3 
	3 

	[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 
	[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 

	[Exit 16: I-290] 
	[Exit 16: I-290] 

	0.60 
	0.60 


	TR
	Span
	Cluster1 
	Cluster1 
	 

	4 
	4 

	[Weekdays: yes]+[weather condition: clear]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  
	[Weekdays: yes]+[weather condition: clear]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  

	[Exit 7 Skyway] 
	[Exit 7 Skyway] 

	1 
	1 


	TR
	Span
	Cluster2 
	Cluster2 
	 

	5 
	5 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[weather condition: rain (clear)]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] 
	[weekdays: yes]+[hour: 4 PM-6 PM]+[weather condition: rain (clear)]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] 

	[Exit 8: Niagara Street] 
	[Exit 8: Niagara Street] 

	1 (0.38) 
	1 (0.38) 


	TR
	Span
	6 
	6 

	([season: Winter]+)[weekdays: yes]+ [direction: north]+[lane number at main road: 3]+[lane number at ramp: 2]+[ramp type: off ramp] 
	([season: Winter]+)[weekdays: yes]+ [direction: north]+[lane number at main road: 3]+[lane number at ramp: 2]+[ramp type: off ramp] 

	[Exit 6: Elm/Oak Street] 
	[Exit 6: Elm/Oak Street] 
	 

	0.90 (1) 
	0.90 (1) 




	Table
	TBody
	TR
	Span
	Cluster3 
	Cluster3 

	7 
	7 

	[weekdays: no]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 2]+[ramp type: off ramp]  
	[weekdays: no]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 2]+[ramp type: off ramp]  

	[Exit 6: Elm/Oak Street] 
	[Exit 6: Elm/Oak Street] 

	0.89 
	0.89 


	TR
	Span
	Cluster4 
	Cluster4 

	8 
	8 

	[season: winter]+[weekdays: yes]+[lane number at main road: 2]+[lane number at ramp: 0] 
	[season: winter]+[weekdays: yes]+[lane number at main road: 2]+[lane number at ramp: 0] 

	Milepost 10-12 
	Milepost 10-12 

	0.54 
	0.54 


	TR
	Span
	Cluster5 
	Cluster5 

	9 
	9 

	[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  
	[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  

	[Exit 11: Route 198] 
	[Exit 11: Route 198] 

	1 
	1 


	TR
	Span
	10 
	10 

	([season: winter]+)[hour: 7 AM-9 AM]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp] 
	([season: winter]+)[hour: 7 AM-9 AM]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp] 

	[Exit 17: South Grand Island Bridge] 
	[Exit 17: South Grand Island Bridge] 

	0.54(0.90) 
	0.54(0.90) 


	TR
	Span
	Cluster6 
	Cluster6 

	11 
	11 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 
	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 

	[Exit 16: I-290] 
	[Exit 16: I-290] 

	0.63 
	0.63 


	TR
	Span
	12 
	12 

	[weekdays: yes]+[hour: 7 AM-9 AM]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 
	[weekdays: yes]+[hour: 7 AM-9 AM]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp] 

	[Exit 16: I-290] 
	[Exit 16: I-290] 

	1 
	1 


	TR
	Span
	Cluster7 
	Cluster7 

	13 
	13 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: off ramp]  
	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: off ramp]  

	[Exit 9: Peace Bridge] 
	[Exit 9: Peace Bridge] 

	1 
	1 


	TR
	Span
	14 
	14 

	[hour: 4 PM-6 PM]+[weather condition: clear]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: off ramp] 
	[hour: 4 PM-6 PM]+[weather condition: clear]+[direction: north]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: off ramp] 

	[Exit 9: Peace Bridge]+[road structure: beyond the exit] 
	[Exit 9: Peace Bridge]+[road structure: beyond the exit] 

	0.52 
	0.52 


	TR
	Span
	15 
	15 

	[direction: north]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  
	[direction: north]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  

	[Exit 11: Route 198] 
	[Exit 11: Route 198] 

	1 
	1 


	TR
	Span
	Cluster8 
	Cluster8 

	16 
	16 

	[weekdays: yes]+[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  
	[weekdays: yes]+[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  

	[Exit 7: Skyway] 
	[Exit 7: Skyway] 

	1 
	1 


	TR
	Span
	17 
	17 

	[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  
	[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: highway to highway off ramp]  

	[Exit 7: Skyway]+[road structure: before the exit] 
	[Exit 7: Skyway]+[road structure: before the exit] 

	0.6 
	0.6 


	TR
	Span
	18 
	18 

	[weekdays: yes]+[hour: 10 PM-6 AM]+([wind speed: 10])+[weather condition: snow]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp] 
	[weekdays: yes]+[hour: 10 PM-6 AM]+([wind speed: 10])+[weather condition: snow]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp] 

	[Exit 9: Peace Bridge] 
	[Exit 9: Peace Bridge] 

	0.5 (0.75) 
	0.5 (0.75) 




	 
	 From the analysis on the whole dataset, three association rules with the highest confidence, for the corresponding three hotspots (Exits 9, 11 and 16), are selected. One common feature in body parts of the three rules is there are two lanes at main road, and two out of the three rules contain highway to highway off ramp feature, which appear to be problematic areas with a high accident frequency (this is quite intuitive because of the limitation of capacity and the excessive weaving that takes place there)
	   
	 When the analysis was performed on the clusters, several more rules and causative factors are revealed.  Specifically, 15 association rules are revealed, along with eight hotspots. For the hotspots, only one is located away from exits, and the rest are all close to exits. Furthermore, these seven exits identified are spatially correlated with one another, and fall very neatly in two definite geographic clusters; the first is [Exit 6, Exit 7, Exit 8, Exit 9, and Exit 11] – note that there is no Exit 10 on I
	 
	 Firstly, for Exit 6, when comparing Rules 6 and Rule 7, it becomes clear that the problem is consistently in the north direction no matter if it is a weekday or a non-weekday. Secondly, for Exit 7, when comparing Rules 4 and Rule 16, we can see that Exit 7 is always a hotspot with (confidence level = 1) regardless of the weather condition (both clear and snow). Rule 17 shows that the segment before Exit 7 is a hotspot in south direction when it snows. Thirdly, for Exit 9, Rule 13 provides more specific con
	 
	 Besides insight regarding hotspots, the associative rules shed additional light on the conditions under which accidents happen at those locations.  This additional insight is gained by considering the role of the variables in the “body” parts of the rules.  A few examples are described below. 
	 
	 Firstly, the variables “weekdays” and “hour of the day” appear to affect whether a location becomes a hotspot. Nine out of the 15 association rules generated from the clusters contain “[weekdays: yes]” in the body parts, and five of the nine rules contain “[hour: 7 AM-9 AM]” or [hour: 4 PM-6 PM].” This reveals the effect of weekday peak hours on traffic accidents. Another convincing example comes from Rule 11 and Rule 12. Exit 16-I-290 is a hotspot when it is 7 AM-9 AM in the morning towards north directio
	 
	 Secondly, the feature “[season: winter]” can increase the confidence in claiming a location as a hotspot. For example, Rule 6 in Cluster 2 shows that if it is in winter, the confidence for Exit 6 to be a hotspot on weekdays will increase from 0.90 to 1. Similarly, Rule 10 in Cluster 5 shows that if it is 7 AM-9 AM on someday in winter, the confidence in claiming Exit 17 as a hotspot witness a large increase from 0.54 to 0.90. Besides that, the variable “wind speed” and “weather condition” are found to affe
	 
	Association Rule Analysis to Identify Factors Affecting Incident Clearance Time  
	The association rule analysis was then repeated, this time using the accident attribute “incident clearance time” as the “head of the rules” to gain some insight into the factors affecting incident clearance time.  For clearance time analysis, the minimum support is set as 0.05, and the minimum confidence is lowered to 0.30 (experiments showed this set of rules to have lower confidence levels compared to the hotspot analysis).  The results are shown in 
	The association rule analysis was then repeated, this time using the accident attribute “incident clearance time” as the “head of the rules” to gain some insight into the factors affecting incident clearance time.  For clearance time analysis, the minimum support is set as 0.05, and the minimum confidence is lowered to 0.30 (experiments showed this set of rules to have lower confidence levels compared to the hotspot analysis).  The results are shown in 
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	Table 5. Rules on Clearance Time from the Whole Dataset and the Clusters 
	 
	Table
	TBody
	TR
	Span
	Datasets 
	Datasets 

	ID 
	ID 

	Body 
	Body 

	Head 
	Head 

	Confidence 
	Confidence 


	TR
	Span
	Whole Dataset 
	Whole Dataset 

	1 
	1 

	[weekdays: yes]+[hour: 4 PM-6 PM] 
	[weekdays: yes]+[hour: 4 PM-6 PM] 

	[Clearance time: 31-45 minutes] 
	[Clearance time: 31-45 minutes] 

	0.32 
	0.32 


	TR
	Span
	2 
	2 

	[season: winter]+[lane number at main road: 3] 
	[season: winter]+[lane number at main road: 3] 

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.34 
	0.34 


	TR
	Span
	Cluster1 
	Cluster1 
	 

	3 
	3 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[wind speed: 10]+[direction: south]+[lane number at main road: 3] 
	[weekdays: yes]+[hour: 4 PM-6 PM]+[wind speed: 10]+[direction: south]+[lane number at main road: 3] 

	[Clearance time: 31-45 minutes] 
	[Clearance time: 31-45 minutes] 

	0.35  
	0.35  


	TR
	Span
	Cluster2 
	Cluster2 
	  

	4 
	4 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[weather condition: clear]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] +[ramp type: off ramp]+[road structure: at the exit] 
	[weekdays: yes]+[hour: 4 PM-6 PM]+[weather condition: clear]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] +[ramp type: off ramp]+[road structure: at the exit] 

	[Clearance time: 31-45 minutes] 
	[Clearance time: 31-45 minutes] 

	0.58 
	0.58 


	TR
	Span
	5 
	5 

	[weekdays: yes]+[weather condition: clear]+[Exit 8: Niagara Street]+[direction: north]+[lane number at main road: 3]  
	[weekdays: yes]+[weather condition: clear]+[Exit 8: Niagara Street]+[direction: north]+[lane number at main road: 3]  

	[Clearance time: 31-45 minutes] 
	[Clearance time: 31-45 minutes] 

	0.55 
	0.55 


	TR
	Span
	6 
	6 

	[season: winter]+[weekdays: yes]+[weather condition: clear]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] 
	[season: winter]+[weekdays: yes]+[weather condition: clear]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1] 

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.30 
	0.30 


	TR
	Span
	Cluster3 
	Cluster3 

	7 
	7 

	[season: autumn]+[weekdays: no]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: off ramp] 
	[season: autumn]+[weekdays: no]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: off ramp] 

	[Clearance time: 46-60 minutes] 
	[Clearance time: 46-60 minutes] 

	0.60 
	0.60 


	TR
	Span
	8 
	8 

	[weekdays: no]+[Exit 8: Niagara Street]+ [lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: off ramp] 
	[weekdays: no]+[Exit 8: Niagara Street]+ [lane number at main road: 3]+[lane number at ramp: 1]+[ramp type: off ramp] 

	[Clearance time: 46-60 minutes]  
	[Clearance time: 46-60 minutes]  

	0.33  
	0.33  


	TR
	Span
	Cluster4 
	Cluster4 

	9 
	9 

	[season: autumn]+[weekdays: yes]+[lane number at main road: 3]+[lane number at ramp: 0] 
	[season: autumn]+[weekdays: yes]+[lane number at main road: 3]+[lane number at ramp: 0] 

	[Clearance time: 46-60 minutes] 
	[Clearance time: 46-60 minutes] 

	0.50 
	0.50 
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	TBody
	TR
	Span
	10 
	10 

	[season: winter]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 
	[season: winter]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.47 
	0.47 


	TR
	Span
	11 
	11 

	[weekdays: no]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 
	[weekdays: no]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.37 
	0.37 


	TR
	Span
	12 
	12 

	[weekdays: yes]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 
	[weekdays: yes]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 0] 

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.41 
	0.41 


	TR
	Span
	13 
	13 

	[weekdays: yes]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 0] 
	[weekdays: yes]+[direction: north]+[lane number at main road: 3]+[lane number at ramp: 0] 

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.31 
	0.31 


	TR
	Span
	Cluster5 
	Cluster5 

	14 
	14 

	[weekdays: no]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]  
	[weekdays: no]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]  

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.31 
	0.31 


	TR
	Span
	15 
	15 

	[weekdays: yes]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]  
	[weekdays: yes]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]  

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.32 
	0.32 


	TR
	Span
	16 
	16 

	[weekdays: yes]+ [Exit 9: Peace Bridge]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp]  
	[weekdays: yes]+ [Exit 9: Peace Bridge]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 1]+[ramp type: off ramp]  

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.60 
	0.60 


	TR
	Span
	Cluster6 
	Cluster6 

	17 
	17 

	[Exit 16: I-290]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp]+[road structure: at the exit]  
	[Exit 16: I-290]+[direction: south]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp]+[road structure: at the exit]  

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.35 
	0.35 


	TR
	Span
	18 
	18 

	[hour: 7 AM-9 AM]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp]  
	[hour: 7 AM-9 AM]+[lane number at main road: 2]+[lane number at ramp: 2]+[ramp type: highway to highway off ramp]  

	[Clearance time: 46-60 minutes] 
	[Clearance time: 46-60 minutes] 

	0.33 
	0.33 


	TR
	Span
	Cluster7 
	Cluster7 

	19 
	19 

	[weekdays: yes]+[hour: 1 PM-3 PM]+[direction: north]+[lane number at main road: 2] 
	[weekdays: yes]+[hour: 1 PM-3 PM]+[direction: north]+[lane number at main road: 2] 

	[Clearance time: 0-15minutes] 
	[Clearance time: 0-15minutes] 

	0.52 
	0.52 


	TR
	Span
	20 
	20 

	[weekdays: yes]+[Exit 9: Peace Bridge]+[direction: north]+[lane number at main road: 2]  
	[weekdays: yes]+[Exit 9: Peace Bridge]+[direction: north]+[lane number at main road: 2]  

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.31 
	0.31 


	TR
	Span
	21 
	21 

	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: north]+[lane number at main road: 2] 
	[weekdays: yes]+[hour: 4 PM-6 PM]+[direction: north]+[lane number at main road: 2] 

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.31 
	0.31 


	TR
	Span
	22 
	22 

	[Exit 11: Route 198]+[direction: north]+[lane number at main road: 2] 
	[Exit 11: Route 198]+[direction: north]+[lane number at main road: 2] 

	[Clearance time: 31-45minutes] 
	[Clearance time: 31-45minutes] 

	0.34 
	0.34 


	TR
	Span
	23 
	23 

	[season: winter]+([weather condition: snow])+[direction: north]+[lane number at main road: 2] 
	[season: winter]+([weather condition: snow])+[direction: north]+[lane number at main road: 2] 

	[Clearance time: 31-45 minutes] 
	[Clearance time: 31-45 minutes] 

	0.34 (0.46) 
	0.34 (0.46) 


	TR
	Span
	Cluster8 
	Cluster8 

	24 
	24 

	[season: winter]+[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]  
	[season: winter]+[weather condition: snow]+[direction: south]+[lane number at main road: 3]+[lane number at ramp: 1]  

	[Clearance time: 16-30 minutes] 
	[Clearance time: 16-30 minutes] 

	0.52 
	0.52 




	 
	 As shown in 
	 As shown in 
	Table 1
	Table 1

	, clearance time is divided into seven intervals, each 15 minutes long. When the analysis was performed for the whole dataset, two rules are shown: Rule 1 is associated with peak-hour 4 PM-6 PM on weekdays, and the clearance time of accidents is shown to be 31-45 minutes (with a confidence level of 0.32); Rule 2 is for winter, if accidents happen at sections with three lanes main road, the clearance time tend to be between 16-30 

	minutes (with confidence level of 0.32). As before, when the associate rule analysis is performed on the whole dataset, limited insight is gained.   
	 
	 For the clusters, 22 rules are selected; four have a clearance time of 46-60 minutes, 12 have 31-45 minute clearance times, 5 have 16-30 minutes, while the remainder has 0-16 minutes clearance times. Some of the main observations are summarized below.  
	 
	 Firstly, with respect to the “Weekday” variable, its impact on the incident clearance time appears to be mixed.  For example, Rule 8 shows that on non-weekdays, accidents at Exit 8 have clearance time between 46 and 60 minutes with confidence 0.33. Also, according to Rule 11 and 12, on the southbound sections with 3 lanes on the main road, accidents on non-weekdays tend to have a longer clearance time than accidents on weekdays. On the other hand, when comparing Rule 14 and 15, we can see that with other f
	 
	 Secondly, the variable “Hour of the Day” may have an impact on the clearance time of traffic accidents. Rules 3, 4 and 21, which correspond to a clearance time 31-45 minutes, all have the same feature “the peak hours 4 PM-6 PM” in their body parts; Rule 18 shows that at peak hours 7 AM-9 AM, accidents on sections with two lanes at main road and two lanes at highway to highway off ramp have a probability of 0.33 to experience 46-60 minutes. And Rule 19 which shows on weekdays at 1 PM-3 PM (i.e. off-peak) th
	 
	 Thirdly, the feature “snow” appears to increase the likelihood of longer clearance time.  According to Rule 23, in the winter for sections towards north with two lanes at main road, the confidence in the clearance time being 36-45 minutes (i.e. on the long side) is 0.34. During snowy condition, the confidence increases to 0.46. 
	 
	 Finally, the “direction” of the road may also affect the clearance time (because it could potentially impact the time needed to get to the incident scene). By comparing Rule 12 and Rule 13, we can see that for sections with 3 lanes on the main road on weekdays, accidents in the north direction has clearance time of 31-45 minutes with confidence 0.31, while accidents in the south direction has a probability of 0.41 to have clearance time of 16-30 minutes.  Another similar example is for hotspot at Exit 9. B
	 
	CONCLUSIONS 
	In this study, the modularity-optimizing community detection algorithm was used first to cluster accident data recorded for I-190 in the Buffalo-Niagara area.  Following this, the association rules learning algorithm was used to gain some insight into accident hotspots and incident 
	clearance times.  To demonstrate the benefits of clustering, the association rule algorithm was applied to both the whole dataset (before clustering) and then to the clusters and the results were compared.  The main findings are summarized as below:  
	 
	1) The community detection algorithm appears to do an excellent job in clustering the data into well-defined clusters;  
	2) Clustering the data first before running the association rule learning algorithm appears to be a necessary step that can significantly improve the quality of the insight to be gained from the rules extracted.  Specifically, when the association rule algorithm was run on the whole dataset in this study, the insight gained was very limited compared to that gained from running the analysis on the clusters. 
	 
	3) The association rule learning algorithm has the potential to reveal interesting insight about the characteristics of accidents, where they tend to occur, and the factors that affect incident clearance time.  
	 
	For future research, the authors plan to test the community detection and association rule learning algorithms on larger and richer data sets, and to explore additional relationships between causative factors and accident attributes.  They also plan to apply some of the previously used statistical traffic accident techniques, in particular hazard-based duration models, to the analysis of the accident clearance time and to compare the results to those from the data mining techniques utilized herein. 
	 
	  
	  
	 
	A NOVEL VARIABLE SELECTION METHOD BASED ON FREQUENT PATTERN TREE FOR REAL-TIME TRAFFIC ACCIDENT RISK PREDICTION  
	Traffic accidents cause a great deal of loss of lives and property. According to the accidents report of the United States Census Bureau, there were 10.8 million accidents and 35,900 persons killed in 2009 (US census bureau, 2013). To address this, many studies have been conducted to predict accident frequencies and analyze the characteristics of traffic accidents, including studies on hazardous location/hot spot identification (Lin et al., 2014), accident injury-severities analysis (Milton et al., 2008), a
	 
	With the development of intelligent transportation systems technologies, there currently exists a wealth of real-time traffic data collected from fixed-locations sensors, automatic vehicle identification systems and other sensing technologies. These data sources can be fused and analyzed to develop real-time management strategies and applications for the purpose of improving efficiency, safety, resiliency and reliability of transportation systems. Particularly in the area of transportation safety, researche
	 
	New issues are emerging accompanying the new opportunities offered by real-time traffic data. One issue is that related to explanatory variable selection, a topic that has received increased attention in real-time traffic accident risk prediction. The wealth of real-time traffic data offer more explanatory variables that may contribute to explaining traffic accident risk and patterns. However, as has been widely recognized, “more is not always better”, particularly for accident prediction. Inclusion of a la
	 
	In terms of usage, as a preprocessing step before building any prediction models, variable selection can help researchers identify and extract meaningful information (patterns, structure, underlying relationships, etc.) from the data. Only a small representative subset of the original feature space of the data may be needed to interpret the results (Fernández et al., 2014).  
	Real-time traffic accident risk prediction models can be broadly classified into two categories, namely statistical models and data mining/machine learning models. Statistical models, such as matched case-control logistic regression models (Abdel-Aty et al., 2004), binary logit models (Xu et al., 2013) and aggregate log-linear models (Lee et al., 2003), have been tested and used in the previous studies. Typical examples of the data mining/ machine learning modeling approach include k nearest neighbor models
	 
	As previously mentioned, the variable selection problem has attracted attention in previous real-time traffic accident risk prediction research. For statistical models, Sawalha and Sayed (2006) found that using less but statistically significant explanatory variables can avoid over-fitting and improve the reliability of a model. They suggested combining the t-statistics test and the 
	likelihood ratio based scaled deviance test, for selecting significant explanatory variables. Different procedures were suggested for Poisson regression and negative binomial regression respectively due to the additional complexity introduced to the scaled deviance test for negative binomial regression models. As for the data mining models, classification and regression tree (CART) has been used to perform variable selection (Yu and Abdel-Aty, 2013; Pande and Abdel-Aty, 2006). Another ensemble learning meth
	 
	Different from previous research, this study proposes a novel frequent pattern tree (FP tree) based variable selection method for real-time traffic accident risk prediction, using the data collected on interstate highway I-64 in Virginia as the case study.  A new algorithm was built to rank explanatory variables based on the “calculated variable importance score”. To verify the model performance, the study then develops two traffic accident risk prediction models, namely a k-nearest neighbor model and a Bay
	 
	This section is organized as below.  First, an introduction to the Frequent Pattern (FP) tree model and its variable importance score calculation algorithm is provided. Second, we describe the traffic accident datasets used for model training and testing.  Third, we describe and compare the FP tree and the random forest based variable selection methods, in terms of their variable importance ranking results. Fourth, based on the variables selected by the FP tree and the random forest methods respectively, tw
	 
	MODEL METHODOLOGY 
	This section discusses the FP-tree algorithm used in this study for explanatory variable selection.  The algorithm consists of two steps: variable discretization and variable importance score calculation. For the former step, the fuzzy c-means clustering method is used to convert a continuous variable to a series of discrete categorical variables; for the latter, we propose the “Relative Object Purity Ratio (ROPR)” as an importance score for each explanatory variable. This section will also introduce the ra
	 
	Frequent-pattern tree (FP-tree) 
	The Frequent pattern tree (FP-tree) algorithm was proposed by Han et al. (2004). It yields a compact representation of all relevant frequency information in a dataset. A brief introduction of 
	the FP-tree algorithm follows. Suppose 𝐼={𝑖1,𝑖2,𝑖3,…,𝑖𝑚} be a set of items. Let 𝑇𝑁 be a set of transactions or records in a database DB, and each transaction 
	the FP-tree algorithm follows. Suppose 𝐼={𝑖1,𝑖2,𝑖3,…,𝑖𝑚} be a set of items. Let 𝑇𝑁 be a set of transactions or records in a database DB, and each transaction 
	 is a set of items, . A pattern 𝑋 also contains a set of items, 
	. 𝑋 is called a frequent pattern when its support, referring to the frequency at which 𝑋 appears in the 𝑇𝑁 transactions, is equal to or greater than the minimum support threshold, 
	. 
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	Figure
	 
	 
	 
	         Equation 6 
	InlineShape

	where, 
	where, 
	is a threshold value defined by user. 

	 
	A FP-tree includes a root labeled as “null”. It also includes a set of item-prefix sub-trees as the children of the root. There are two important fields for each node in the item-prefix sub-trees: item name and count. Item name tells which item this node represents, and count records the number of transactions represented by the portion of the path reaching this node. 
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	Figure 2. Frequent pattern (FP) tree. 
	Figure 2
	Figure 2
	Figure 2

	 shows an example of a FP tree. Suppose there are TN transactions [𝑥1,𝑥2,…,𝑥𝑇𝑁] in database DB, each transaction contains the values of n explanatory variables 𝑉𝑒, 1≤𝑒≤𝑛, and one response variable 𝑉𝑟 which, in our case, denotes whether an accident occurs or not. The FP tree is then built on the TN transactions with 𝑛 explanatory variables, among which the continuous variables are first transformed to discrete variables by using the Fuzzy C-means clustering method (FCM) as will be discussed in a 

	 
	After the FP tree is constructed and the shared and exclusive nodes identified, the next step is to assign credits or scores to the discrete items in the exclusive nodes, given that these exclusive nodes differentiate the frequent patterns from one another. In this study, we propose a novel variable importance score calculation method based on the Relative Object Purity Ratio, as we describe later in this report.   
	 
	Figure 3
	Figure 3
	Figure 3

	 summarizes the different steps of the variable selection method. In that Figure, we distinguish between the novel aspects of the proposed method (highlighted in bold and italic), and those which we borrow from the previous work reported in the literature.  In our subsequent discussion, we focus on those novel aspects but we still briefly describe the other steps as well for the convenience of the reader.   
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	Figure 3. Flow chart of variable selection method based on FP tree 
	 
	Variable importance calculation:  
	A novel FP tree based variable importance score calculation method is proposed to rank and select the significant explanatory variables for accident risk prediction.  The method proceeds as follows. 
	 
	1. For each frequent pattern 𝑝𝑞, calculate its object purity ratio 𝑟𝑞 (OPR). OPR refers to the proportion of records falling into this frequent pattern, where their response variable 𝑉𝑟 takes the object value 𝑜 (in this study the object value 𝑜 is set as 1 which indicates an accident occurrence). 𝑟𝑞 can thus be calculated as follows:  
	 
	 
	 
	        Equation 7 
	InlineShape

	where, 
	 is the number of records in frequent pattern 𝑞 which have the response variables 𝑉𝑟 as 𝑜; 
	 is the number of records in frequent pattern 𝑞 which have the response variables 𝑉𝑟 as 𝑜; 
	InlineShape

	 is the number of records allocated to frequent pattern q.  
	 is the number of records allocated to frequent pattern q.  
	InlineShape

	 
	One issue associated with OPR is that its value is in reference to the proportion of records taking the object value in the whole dataset DB, which can thus lead to inconsistent variable ranking. In this context, it is the difference between the OPR value of a pattern and the average behavior of the entire data that actually distinguishes a pattern. Therefore, we propose the relative object purity ratio 𝑟𝑟𝑞 (ROPR) in this study, where, in its modified version, ROPR represents the absolute difference betw
	 
	 
	 
	     Equation 8 
	InlineShape

	where, 
	 is the number of records with the response variables 𝑉𝑟 as the object value 𝑜.  
	 is the number of records with the response variables 𝑉𝑟 as the object value 𝑜.  
	InlineShape

	 
	2. Given an observed record located in this frequent pattern, one intuitive thought is that the higher the ROPR is, the purer the frequent pattern is and the more likely the object response value will take place (i.e., in our case, that an accident will occur) or will not happen. Again, we assume that only the discrete items that are in the exclusive nodes play a role in differentiating one frequent pattern from the others. Therefore, the importance score of an item is determined as follows: for each transa
	2. Given an observed record located in this frequent pattern, one intuitive thought is that the higher the ROPR is, the purer the frequent pattern is and the more likely the object response value will take place (i.e., in our case, that an accident will occur) or will not happen. Again, we assume that only the discrete items that are in the exclusive nodes play a role in differentiating one frequent pattern from the others. Therefore, the importance score of an item is determined as follows: for each transa
	in DB, find its corresponding frequent pattern 𝑝𝑞 and exclusive nodes 𝐸𝑞; for each item in 
	, if it exists in 𝐸𝑞, add the ROPR to the item’s importance score 𝐼𝑆𝑖, otherwise, keep 𝐼𝑆𝑖 unchanged.  

	 
	 
	 
	, 
	    Equation 9    
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	where, 
	if item 𝑖 is in transaction 
	if item 𝑖 is in transaction 
	; otherwise 
	; 
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	 if 𝑝𝑞 is the frequent pattern of the corresponding transaction 
	 if 𝑝𝑞 is the frequent pattern of the corresponding transaction 
	; otherwise 
	; 
	InlineShape
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	 if item 𝑖 is in the exclusive node set 𝐸𝑞; otherwise 
	 if item 𝑖 is in the exclusive node set 𝐸𝑞; otherwise 
	. 
	InlineShape
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	3. After the importance score of each item is calculated, the remaining step is to calculate the importance score of a variable (𝐼𝑆𝑣).  
	 
	 
	 
	, 
	      Equation 10     
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	where, 
	if item 𝑖 is one discrete value of variable 
	if item 𝑖 is one discrete value of variable 
	; otherwise 
	. 
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	At last, the explanatory variables can be ranked based on the variable importance scores.  
	 
	Variable discretization for FP tree 
	The FP-tree algorithm requires each transaction in the database to be a set of discrete items. However, in traffic accident risk prediction database, continuous variables such as traffic speed and traffic volume are quite common. In this study, the Fuzzy C-means clustering method (FCM) is used to transform the continuous variables to the discrete variables. FCM is an extension of the k-means methods in which each data point can be a member of multiple clusters with a membership value (soft assignment) (Jain
	 
	Random forest 
	Random forest is an ensemble learning method for classification and regression. It is widely used to rank the importance of variables in a natural way. Again, suppose there are TN records or transactions [𝑥1,𝑥2,…,𝑥𝑇𝑁] in database DB, each record includes one response variable 𝑉𝑟 and a set of explanatory variables 𝑉=[𝑉1,…,𝑉𝑛], a classification and regression tree (CART) 𝑓̂ for predicting 𝑉𝑟 can be built (Breiman et al., 1984) . The prediction error of 𝑓̂ based on a validation subset of DB is t
	 
	 
	 
	,      Equation 11 
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	where, 
	;  
	;  
	InlineShape

	 is the validation data subset; 
	 is the validation data subset; 
	InlineShape

	 is the observed value of the response variable of the 𝑖𝑡ℎ record.  
	 is the observed value of the response variable of the 𝑖𝑡ℎ record.  
	InlineShape

	 
	However, CART is known to be unstable as a small perturbation of the training sample may change the prediction results. To overcome this, Breiman introduced the random forest algorithm (Breiman, 2001): the trees are built over 𝑛𝑡𝑟𝑒𝑒 bootstrap samples 𝐷𝐵1,…,𝐷𝐵𝑛𝑡𝑟𝑒𝑒 of the training data DB; for each tree, different from the CART algorithm, a subset of variables 𝑛𝑣𝑎𝑟 is randomly chosen for the splitting rule at each node; each tree is then fully grown until each node is pure. The trees are no
	 
	The Gini criterion is used to select the split with the lowest impurity at each node. As a useful byproduct of random forests, the Gini variable importance measure can be calculated once the forest is formed: at each split, the decrease in the Gini node impurity is recorded for variable 𝑉𝑖 in [𝑉1,…,𝑉𝑛], and the average of all the decreases in the Gini impurity in the forest where 𝑉𝑖 
	forms the split is its Gini variable importance. At last, the variables can be ranked according to the Gini variable importance measure (Archer and Kimes, 2008). Besides this, Breiman also proposed other measures like the permutation importance, the z-score and so on (Breiman, 2001).  
	k nearest neighbor (k-NN) 
	k-NN is a classification method that decides the class of an object by finding its k-nearest neighbors (i.e. most similar) based on its explanatory variables in the training dataset. The Euclidean distance is typically used to assess similarity (Lin et al., 2013). When k nearest neighbors are found, the following equation (12) 
	k-NN is a classification method that decides the class of an object by finding its k-nearest neighbors (i.e. most similar) based on its explanatory variables in the training dataset. The Euclidean distance is typically used to assess similarity (Lin et al., 2013). When k nearest neighbors are found, the following equation (12) 
	,      Equation 11
	,      Equation 11

	can be used to determine the class of the object (Murphy, 2012):  
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	where, 
	 
	𝑁𝑘(𝑋,𝐷) are the k nearest neighboring points to object 𝑋 in point set 𝐷;  
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	; 
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	 is the response variable of object 𝑋; 
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	is the one of the possible classes.  
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	Bayesian network 
	By the chain rule of probability, a joint distribution can be represented as follows: 
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	 is the number of variables; 
	 is the number of variables; 
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	 denotes the set 
	 denotes the set 
	.  
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	Suppose all the variables have 𝐾 discrete states, we can create 𝑝(𝑥1) as a table of 𝑂(𝐾) numbers, representing a discrete distribution (there are actually only K-1 free parameters because of the sum-to-one constraint, but we write 𝑂(𝐾) for simplicity). Similarly, we can create 𝑝(𝑥2|𝑥1) as a table of 𝑂(𝐾2) numbers, and 𝑝(𝑥3|𝑥2,𝑥1) as a table with 𝑂(𝐾3) numbers, and so on. These tables are called conditional probability tables (CPTs). As can be seen, the conditional distributions p(𝑥𝑡|𝑋1:
	 
	A Bayesian network is an efficient tool to overcome this problem. Specifically, a Bayesian network is a directed graphical model representing a joint distribution by making conditional independence (CI) assumptions. The nodes in the graph represent random variables, and the edges represent the CI assumptions.  More details can be found in Lin et al. (2015).   
	 
	MODELING DATASET  
	The dataset used in this study includes the traffic accident records collected on a segment on interstate highway I-64 in Norfolk, Virginia in 2005, as marked in 
	The dataset used in this study includes the traffic accident records collected on a segment on interstate highway I-64 in Norfolk, Virginia in 2005, as marked in 
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	Figure 4

	. 

	 
	Figure
	W64-07 WB 
	W64-07 WB 
	Figure

	Figure
	W64-06 WB 
	W64-06 WB 
	Figure

	Figure
	W64-03 EB 
	W64-03 EB 
	Figure

	Figure
	Figure
	W64-01 WB 
	W64-01 WB 
	Figure

	W64-01 EB 
	W64-01 EB 
	Figure

	Figure
	 
	Figure 4. Part of I-64 in Norfolk, Virginia. 
	 
	The accidents were stored in the Virginia Department of Transportation (VDOT’s) Archived Data Management System (ADMS). Besides that, this dataset also contains weather, visibility, traffic volume, speed, and occupancy information, with one minute resolution.  
	 
	However, this dataset by itself cannot be directly applied to predict real-time traffic risk directly. As a classification problem, the pre-crash condition and normal traffic condition have to be defined first (Hossain and Muromachi, 2012). Some studies defined the pre-crash condition as a time period starting right before an accident and extending up to 5 or 10 minutes (Oh et al., 2005; Zheng et al., 2010), while some studies defined it as a 5 minute time period starting from a close time point such as 4 o
	 
	In this study, as shown in 
	In this study, as shown in 
	Figure 5
	Figure 5

	. we used two temporal settings to define the pre-crash condition: the first one is a 10-minute time period starting from 5 minute before the accident, and the other is in a 5-minute time period starting from 5 minute before the accident. The normal condition is defined as the same time period as the pre-crash condition, but taking place on the same day of the other weeks from two weeks earlier to two weeks later than the day of the week with an accident. It needs to note that a normal condition data point 
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	Figure 5. Temporal settings of pre-crash and normal traffic conditions 
	 
	After the pre-crash condition and normal traffic condition are defined, the relevant data can be extracted given the number and locations of traffic detectors in place. Most of the previous studies considered more than one detector during the extraction process, such as one upstream detector and one downstream detector (Abdel-Aty et al., 2008), and two upstream detectors, two downstream detectors and one detector covering the accident location (Hossain and Muromachi, 2012). Due to the problem of missing dat
	After the pre-crash condition and normal traffic condition are defined, the relevant data can be extracted given the number and locations of traffic detectors in place. Most of the previous studies considered more than one detector during the extraction process, such as one upstream detector and one downstream detector (Abdel-Aty et al., 2008), and two upstream detectors, two downstream detectors and one detector covering the accident location (Hossain and Muromachi, 2012). Due to the problem of missing dat
	Figure 4
	Figure 4

	. 

	  
	At last, two datasets were obtained, which differ from each other in terms of the time period used to define the pre-crash and normal traffic condition (the first DB has a time period of 10-minute long, and the second one is 5-minute long).  Eight explanatory variables were contained in the data, including: the mean of the weather condition (Meanwea) as defined below, the mean of visibility (Meanvis), the mean and standard deviation of the traffic volume (Meanvol and Stdvol, 
	unit: vehicle per hour), the mean and standard deviation of the traffic speed (Meanspe and Stdspe, unit: mph), and the mean and standard deviation of the occupancy (Meanocu and Stdocu). The accident response variable is defined as a binary variable with value 1 for the pre-crash situation and 0 for normal traffic. It is worth noting that the weather variable was a categorical variable originally with 26 possible different weather types.   
	We used the numbers 0 to 25 to represent these different weather types that range from fine weather like “clear” to extreme inclement weather like “thunderstorm”. Although typically, the weather condition will not change significantly within a 5- or 10- minute period, we nevertheless, take the mean value of the weather over that period. The resulting variable, therefore, may theoretically assume a non-integer value and can be assumed as a continuous (and not discrete) variable.  The same applied for “visibi
	 
	After processing, the 5-minute accident dataset included 170 pre-crash records and 555 normal traffic records, and the 10- minute accident dataset included 174 pre-crash records and 569 normal traffic records. Note that the 5-minute accident dataset has fewer records because of the higher probability of data missing for 5 minute period than the 10 minute period. For each dataset, 80% of the pre-crash records and normal traffic records were randomly chosen as the training dataset while the remaining 20% were
	  
	MODEL DEVELOPMENT AND RESULTS 
	Variable importance calculation 
	Two training datesets are generated through the random sampling with the 80% rate, including a 5-minute training dataset with 136 pre-crash records and 444 normal traffic records and a 10-minute training dataset with 139 pre-crash records and 455 normal traffic records. For each training dataset, FCM was first applied to transfer a continuous variable to a discrete cluster variable.   
	 
	Table 6. Clustering results for 5-minute and 10-minute accident training datasets 
	 
	Table
	TBody
	TR
	Span
	datasets 
	datasets 

	Variable  
	Variable  

	Cluster 1 low  
	Cluster 1 low  

	Cluster 2 medium  
	Cluster 2 medium  

	Cluster 3 high 
	Cluster 3 high 


	TR
	Span
	5-minute  
	5-minute  
	training dataset 

	Meanwea 
	Meanwea 

	[0, 5] 
	[0, 5] 

	[6, 16] 
	[6, 16] 

	[17, 25] 
	[17, 25] 


	TR
	Meanvis 
	Meanvis 

	[0.13, 4.25] 
	[0.13, 4.25] 

	[5, 8]  
	[5, 8]  

	[8.8, 10] 
	[8.8, 10] 


	TR
	Meanvol 
	Meanvol 

	[60, 564] 
	[60, 564] 

	[576, 1164] 
	[576, 1164] 

	[1176, 1908] 
	[1176, 1908] 


	TR
	Meanocu 
	Meanocu 

	[1, 8.2] 
	[1, 8.2] 

	[8.4, 27.6] 
	[8.4, 27.6] 

	[31.2, 66.4] 
	[31.2, 66.4] 


	TR
	Meanspe 
	Meanspe 

	[0, 33.6] 
	[0, 33.6] 

	[34, 59.8] 
	[34, 59.8] 

	[60, 93] 
	[60, 93] 


	TR
	Stdvol 
	Stdvol 

	[0, 112.24] 
	[0, 112.24] 

	[115.41, 245.19] 
	[115.41, 245.19] 

	[247.38, 642.58] 
	[247.38, 642.58] 


	TR
	Stdocu 
	Stdocu 

	[0, 3.96] 
	[0, 3.96] 

	[4, 15.66] 
	[4, 15.66] 

	[26.62, 27.07] 
	[26.62, 27.07] 


	TR
	Stdspe 
	Stdspe 

	[0, 4.15] 
	[0, 4.15] 

	[4.21, 11.73] 
	[4.21, 11.73] 

	[12.19, 33.16] 
	[12.19, 33.16] 


	10-minute  
	10-minute  
	10-minute  
	training dataset 

	Meanwea 
	Meanwea 

	[0, 5] 
	[0, 5] 

	[6, 16] 
	[6, 16] 

	[17, 25] 
	[17, 25] 


	TR
	Meanvis 
	Meanvis 

	[0.25, 4.8] 
	[0.25, 4.8] 

	[5, 8] 
	[5, 8] 

	[8.5, 10] 
	[8.5, 10] 


	TR
	Meanvol 
	Meanvol 

	[60, 560] 
	[60, 560] 

	[564, 1152] 
	[564, 1152] 

	[1170, 1890] 
	[1170, 1890] 


	TR
	Meanocu 
	Meanocu 

	[1, 7.9] 
	[1, 7.9] 

	[8, 28] 
	[8, 28] 

	[29.7, 66.4] 
	[29.7, 66.4] 


	TR
	Meanspe 
	Meanspe 

	[0, 31.6] 
	[0, 31.6] 

	[34.37, 59.8] 
	[34.37, 59.8] 

	[59.85, 94.5] 
	[59.85, 94.5] 


	TR
	Stdvol 
	Stdvol 

	[0, 124.73] 
	[0, 124.73] 

	[124.9, 245.68] 
	[124.9, 245.68] 

	[248.51, 699.74] 
	[248.51, 699.74] 


	TR
	Stdocu 
	Stdocu 

	[0, 4.17] 
	[0, 4.17] 

	[4.36, 16.06] 
	[4.36, 16.06] 

	[17.79, 31.10] 
	[17.79, 31.10] 
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	Stdspe 
	Stdspe 

	[0, 4.63] 
	[0, 4.63] 

	[4.65, 13.48] 
	[4.65, 13.48] 

	[13.62, 31.78] 
	[13.62, 31.78] 




	 
	The clustering results are shown in 
	The clustering results are shown in 
	Table 6
	Table 6

	. Three clusters were generated for each continuous variable, representing: low, medium and high value ranges. The two numbers in each bracket denotes the lower bound and upper bound of a cluster. Through this process, the original eight continuous explanatory variables were transferred into 24 discrete variables (called items in the following analysis). The support of each item or the size of each cluster were obtained and sorted in a descending order as shown in 
	Table 7
	Table 7

	:  

	 
	Table 7. Supports of items in 5-minute and 10-minute accident training datasets 
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	5-minute training dataset 
	5-minute training dataset 

	10-minute training dataset 
	10-minute training dataset 


	TR
	Span
	Item 
	Item 

	Support 
	Support 

	Item  
	Item  

	Support 
	Support 


	TR
	Span
	1 
	1 

	Stdocu low 
	Stdocu low 

	542 
	542 

	Stdocu low 
	Stdocu low 

	554 
	554 


	2 
	2 
	2 

	Meanwea low 
	Meanwea low 

	435 
	435 

	Meanwea low 
	Meanwea low 

	436 
	436 


	3 
	3 
	3 

	Meanvis high 
	Meanvis high 

	401 
	401 

	Meanvis high 
	Meanvis high 

	405 
	405 


	4 
	4 
	4 

	Meanocu low 
	Meanocu low 

	385 
	385 

	Meanocu low 
	Meanocu low 

	383 
	383 


	5 
	5 
	5 

	Stdspe low 
	Stdspe low 

	372 
	372 

	Stdspe low 
	Stdspe low 

	373 
	373 


	6 
	6 
	6 

	Meanspe medium 
	Meanspe medium 

	337 
	337 

	Meanspe medium 
	Meanspe medium 

	332 
	332 


	7 
	7 
	7 

	Stdvol low 
	Stdvol low 

	321 
	321 

	Stdvol low 
	Stdvol low 

	327 
	327 


	8 
	8 
	8 

	Meanvol medium 
	Meanvol medium 

	261 
	261 

	Meanvol medium 
	Meanvol medium 

	261 
	261 


	9 
	9 
	9 

	Meanspe high 
	Meanspe high 

	216 
	216 

	Meanspe high 
	Meanspe high 

	231 
	231 


	10 
	10 
	10 

	Meanvol low 
	Meanvol low 

	170 
	170 

	Meanvol low 
	Meanvol low 

	188 
	188 


	11 
	11 
	11 

	Meanocu medium 
	Meanocu medium 

	169 
	169 

	Stdspe medium 
	Stdspe medium 

	188 
	188 


	12 
	12 
	12 

	Stdvol medium 
	Stdvol medium 

	169 
	169 

	Stdvol medium 
	Stdvol medium 

	184 
	184 


	13 
	13 
	13 

	Stdspe medium 
	Stdspe medium 

	169 
	169 

	Meanocu medium 
	Meanocu medium 

	178 
	178 


	14 
	14 
	14 

	Meanvol high 
	Meanvol high 

	149 
	149 

	Meanvol high 
	Meanvol high 

	145 
	145 


	15 
	15 
	15 

	Meanvis medium 
	Meanvis medium 

	125 
	125 

	Meanvis medium 
	Meanvis medium 

	132 
	132 


	16 
	16 
	16 

	Meanwea medium 
	Meanwea medium 

	98 
	98 

	Meanwea medium 
	Meanwea medium 

	109 
	109 


	17 
	17 
	17 

	Stdvol high 
	Stdvol high 

	90 
	90 

	Stdvol high 
	Stdvol high 

	83 
	83 


	18 
	18 
	18 

	Meanvis low 
	Meanvis low 

	54 
	54 

	Meanvis low 
	Meanvis low 

	57 
	57 


	19 
	19 
	19 

	Meanwea high 
	Meanwea high 

	47 
	47 

	Meanwea high 
	Meanwea high 

	49 
	49 


	20 
	20 
	20 

	Stdspe high 
	Stdspe high 

	39 
	39 

	Stdocu medium 
	Stdocu medium 

	34 
	34 


	21 
	21 
	21 

	Stdocu medium 
	Stdocu medium 

	35 
	35 

	Meanocu high 
	Meanocu high 

	33 
	33 


	22 
	22 
	22 

	Meanspe low 
	Meanspe low 

	27 
	27 

	Stdspe high 
	Stdspe high 

	33 
	33 


	23 
	23 
	23 

	Meanocu high 
	Meanocu high 

	26 
	26 

	Meanspe low 
	Meanspe low 

	31 
	31 
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	Stdocu high 
	Stdocu high 

	3 
	3 

	Stdocu high 
	Stdocu high 

	6 
	6 




	 
	When screening frequent items, we set the threshold value 
	When screening frequent items, we set the threshold value 
	in equation (1) to 0 so that all the items shown in 
	Table 7
	Table 7

	 are considered. The rationale behind this is to prevent any information loss in the variable importance score calculation. Since the items have already been sorted in a support-based descending order, 
	Table 7
	Table 7

	also provides the F-List to build the FP Tree. The reader is referred to Lin et al. (2015) for an example FP tree built from the training dataset. 

	 
	With the FP Tree constructed, the variables’ importance scores are calculated using equation (3), (4) and (5). The results are shown in 
	With the FP Tree constructed, the variables’ importance scores are calculated using equation (3), (4) and (5). The results are shown in 
	Table 8
	Table 8

	.  

	  
	Table 8. Variable importance calculations results based on FP Tree and random forest methods 
	 
	Table
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	Variables 
	Variables 

	5-minute training dataset 
	5-minute training dataset 

	10-minute training dataset 
	10-minute training dataset 


	TR
	Span
	FP tree 
	FP tree 

	Random Forest 
	Random Forest 

	FP tree 
	FP tree 

	Random Forest 
	Random Forest 


	Meanvol 
	Meanvol 
	Meanvol 

	46 (1)* 
	46 (1)* 

	27.31 (3) 
	27.31 (3) 

	48.6 (1) 
	48.6 (1) 

	27.51 (4) 
	27.51 (4) 


	Stdvol 
	Stdvol 
	Stdvol 

	43.2 (2) 
	43.2 (2) 

	26.98 (4) 
	26.98 (4) 

	42.8 (2) 
	42.8 (2) 

	29.15 (2) 
	29.15 (2) 


	Meanspe 
	Meanspe 
	Meanspe 

	16.6 (7) 
	16.6 (7) 

	28.56 (2) 
	28.56 (2) 

	20.8 (7) 
	20.8 (7) 

	29.02 (3) 
	29.02 (3) 


	Stdspe 
	Stdspe 
	Stdspe 

	35.6 (4) 
	35.6 (4) 

	29 (1) 
	29 (1) 

	29 (6) 
	29 (6) 

	30.11 (1) 
	30.11 (1) 


	Meanocu 
	Meanocu 
	Meanocu 

	21.6 (6) 
	21.6 (6) 

	25.99 (5) 
	25.99 (5) 

	35.8 (4) 
	35.8 (4) 

	24.89 (6) 
	24.89 (6) 


	Stdocu 
	Stdocu 
	Stdocu 

	15.2 (8) 
	15.2 (8) 

	22.19 (6) 
	22.19 (6) 

	15 (8) 
	15 (8) 

	26.41 (5) 
	26.41 (5) 


	Meanwea 
	Meanwea 
	Meanwea 

	40.2 (3) 
	40.2 (3) 

	8.79 (8) 
	8.79 (8) 

	37.6 (3) 
	37.6 (3) 

	9.88 (8) 
	9.88 (8) 


	TR
	Span
	Meanvis 
	Meanvis 

	33.8 (5) 
	33.8 (5) 

	13.77 (7) 
	13.77 (7) 

	30.8 (5) 
	30.8 (5) 

	13.39 (7) 
	13.39 (7) 




	Notes: * The first number is the variable importance score, and the number in the following parentheses is the ranking of variable (“1” means the most important, and “8” means the least important). 
	 
	We also calculated the variables importance scores based on random forest method (see 
	We also calculated the variables importance scores based on random forest method (see 
	Table 8
	Table 8

	), using the package “randomForest” within the statistics software R (Liaw and Wiener, 2002). For more details about calculating the importance scores and the random forest method, the reader is referred to Lin et al., 2015 and Efron and Tibshirani, 1997. 

	 
	With this, for the 5-minute training dataset, the sample size was set as 366, and for the 10-minute training dataset, the sample size was set as 375. The package “randomForest” produced the mean decrease of the Gini index for each variable as an output. As mentioned before, the mean decrease of the Gini index, measures the contribution of a variable to the homogeneity of the nodes and leaves in the random forest (Metagenomics Statistics, 2014). The higher the mean decrease of the associated Gini index is, t
	 
	Through the comparison of the variable importance scores generated from the FP tree and the Random forest, we can see that the two models produce different variable importance rankings. The FP tree models tended to rank traffic volume related variables, such as Meanvol and Stdvol as the top two most important variables while resulting in much lower scores for speed related statistics, particularly for Meanspe. In contrast, traffic speed related statistics variables were deemed slightly more important by the
	 
	k-NN 
	This study tested the performance of k-NN for the 5-minute and 10-minute testing datasets. k was set as 2 and 3 separately, and each time k-NN was run for three scenarios: (1) using all the variables; (2) using all variables except for Meanspe and Stdocu which were ranked as the least important by the FP tree method; and (3) using all variables except for Meanwea and Meanvis that were ranked as the least important by random forest. The voting criterion of k-NN in this study is that once one of k nearest nei
	occurrence of an accident), the predicted response of the observation is set as 1. The results can be seen in 
	occurrence of an accident), the predicted response of the observation is set as 1. The results can be seen in 
	Figure 6
	Figure 6

	.  

	 
	 
	Figure
	Figure 6
	Figure 6
	Figure 6

	a. Comparison of Sensitivity 
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	b. Comparison of False Alarm Rate 

	Figure 6. Performance of k-NN for different variable selection 
	 
	Note that there are two prediction performance measures used as shown in 
	Note that there are two prediction performance measures used as shown in 
	Figure 6
	Figure 6

	a. and 
	Figure 6
	Figure 6

	b.  These are: (1) the sensitivity, which measures the proportion of actual accidents that were accurately predicted as such; and (2) the false alarm rate that refers to the proportion of normal situations that were wrongly predicted as accidents. A good traffic accident risk prediction model should yield a high sensitivity and a low false alarm rate.  

	 
	The major findings are summarized below according to Fig.6. First of all, although k-NN doesn’t perform well in general, using the FP tree to pre-select the explanatory variables significantly 
	improved the prediction accuracy. In comparison to the “all variables case”, the FP tree based k-NN model consistently produced higher prediction sensitivity values and lower false alarm rates, regardless of the testing dataset used. In contrast, there was generally no benefit from the random forest based variable selection, with the only exception of the case of k=3 with the 10-minute testing dataset where the variable selection with the random forest method generated a higher prediction sensitivity than t
	 
	Bayesian network  
	Bayesian network models were also built to predict accident risk for comparison. As a crucial step to perform Bayesian network modeling, the continuous variables need to be discretized. How to transform a continuous variable to discrete category variables vastly depends on the objectives set by researchers (Hossain and Muromachi, 2012). Among the discretization techniques available in the literature, we selected the normalized equal distances (NED) method, using the software Bayesialab due to its promising 
	 
	We considered one of the most plausible Bayesian network structures, which just let the response variable be the child node of the possible explanatory variables (Hossain and Muromachi, 2012). Three scenarios, as before, were tested under the structure: (1) using all the variables; (2) using all except of Meanspe and Stdocu that are ranked as the least important by FP tree; and (3) using all except Meanwea and Meanvis that are ranked as the least important by random forest. The software Netica was used to l
	 
	The performance of Bayesian networks with different NED numbers (in parentheses), and for the 5-minute and 10-minute testing datasets are shown in 
	The performance of Bayesian networks with different NED numbers (in parentheses), and for the 5-minute and 10-minute testing datasets are shown in 
	Figure 7
	Figure 7

	. 
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	a. Comparison of Sensitivity 
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	b. Comparison of False Alarm Rate 
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	c. Comparison of Overall Performance 

	Figure 7. Bayesian network Performance with different variable selection strategies. 
	Several observations can be discerned from 
	Several observations can be discerned from 
	Figure 7
	Figure 7

	. First, based on 
	Figure 7
	Figure 7

	a., which compares the sensitivity values, and 
	Figure 7
	Figure 7

	b., which compares the false alarm rate, the best Bayesian network model results in a sensitivity value as high as 61.11% and a false alarm rate as low as 38.16%, when trained based on the 10-minute dataset with the NED number equal to 4. These results compare very favorably to those obtained by previous studies reported in the literature as shown in 
	Table 9
	Table 9

	.  This is especially true given that the current study, because of missing data, had to rely on data collected from only a single detector (the one reporting the traffic accident), whereas most of the previous studies extracted the relevant variables from both upstream and downstream detectors relative to the crash location.  

	 
	As can be seen, for the previous studies the sensitivity values are usually around 60%, and the false alarm rate ranges between 20% and 50%. The best result from previous studies is that reported by Hossain and Muromachi (2012) with a sensitivity of 66% and a false alarm rate of 20%.  In that study, however,  for each record in the database, information were extracted from two upstream detectors, two downstream detectors and the one nearest to the traffic accident;  we did not have the luxury of such data i
	 
	Table 9. Comparison with the previous studies 
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	TD
	Span
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	TD
	Span
	Variable Selection Method 

	TD
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	Traffic Accident Prediction Method 

	TD
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	Sensitivity 

	TD
	Span
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	TD
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	TD
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	TD
	Span
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	TD
	Span
	Logistic Regression 

	TD
	Span
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	TD
	Span
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	Span
	TD
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	TD
	Span
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	Span
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	TD
	Span
	Neural Network 
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	Span
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	TD
	Span
	28.83% 


	TR
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	TD
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	TD
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	Neural Network 

	TD
	Span
	61% 

	TD
	Span
	21% 


	TR
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	TD
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	TD
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	TD
	Span
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	TD
	Span
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	TD
	Span
	66% 

	TD
	Span
	20% 


	TR
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	TD
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	TD
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	TD
	Span
	Random Forecast 

	TD
	Span
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	TD
	Span
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	TD
	Span
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	Secondly, the results, shown on 
	Secondly, the results, shown on 
	Figure 7
	Figure 7

	a. and 
	Figure 7
	Figure 7

	b., show that the number of NED could affect the performance of the Bayesian network. For the 5-minute dataset, the sensitivity and false alarm rate both decreased when the number of NED was set to 4 instead of 3. On the other hand, for 10-minute dataset, the sensitivity improved, but the false alarm rate remained almost the same when NED number is changed from 3 to 4, except for the situation using the variables based on random forest, for which the false alarm rate also increased.  

	 
	Third, for the majority of cases, the Bayesian network models using variables selected by FP tree perform better than the ones using the random forest selected variables. For example, for the 10-minute dataset, when NED number is 4, although the sensitivity values of the two types of models are somewhat similar (around 61%), the false alarm rate of the random forest based Bayesian network model is much higher than its FP tree based counterpart.  For other cases, however (e.g., the models based on the 5-minu
	to measures the ratio of correct predictions (no matter whether it is accident or a non-accident) in the whole testing dataset. Based on the overall performance criterion, we can easily see that the models based on variables selected by FP tree significantly outperform those based on all the variables or based on random forest for the 10-minute testing dataset.  For the 5-minute testing dataset, the models based on variable selected by FP tree have the same as or a little higher overall performance than the
	 
	CONCLUSIONS AND FUTURE WORK  
	In this part of the study, we proposed a novel variable selection algorithm based on FP tree for real-time traffic accident risk prediction. The importance score of each explanatory variable in the dataset is calculated and ranked through the calculation of the ROPR of the corresponding frequent patterns. This variable selection algorithm was tested on the Virginia traffic accident dataset collected in 2005 in comparison to the widely used random forest variable selection. Based on the variables selected by
	 
	1. Generally, the accident risk prediction results are quite acceptable when using the Bayesian network model with NED number equal to 4 and based on a 10-minute dataset. This is especially true for the case using variables selected by FP tree, where the sensitivity was as high as 61.11% and the false alarm rate was as low as 38.16%. Considering that only data from one detector were available in this study, these results are very promising. 
	 
	2. In terms of the time resolution to be used in compiling the datasets, no decisive conclusions can be made regarding whether a 5-minute or a 10-minute resolution would yield better performance.  For Bayesian network, the overall performances are improved by using the 10-minute dataset except the cases with NED number set as 4, using all variables and FP tree based variables.  
	 
	3. The most important finding of this part of the study is that the accident risk prediction models based on FP tree variable selection outperform the models based on all variables and the ones based on random forest, regardless of the settings of the prediction models such as the selection of k for k-NN, the NED number selected for Bayesian network, and the pre-crash time period used in the datasets. Being insensitive to the selection of the models’ parameters is a good quality that the FP tree variable se
	 
	4. For the applications of the novel variable selection method and traffic accident risk prediction model, given that this is a classification problem in essence, both traffic accident records and normal traffic conditions extracted from the same segment of the road are needed to train and test the models. However, this study shows that records from different segments of the road can be put together in order to generate a bigger dataset. For example, the dataset in this study include the corresponding recor
	 
	As a novel algorithm, there are still a lot of details to be finalized in the future. For example, we may test the impact of clustering number in FCM on the FP tree variable importance calculation (in this study, we just set it as 3), and we may also try other variable discretization methods. Besides that, there are some other variable reduction/selection algorithms, such as stratified random forest (Ye, et al., 2013), and random projection (Fan, et al., 2013) that deserve to be explored. We will also test 
	 
	 
	 
	  
	A COMBINED M5P TREE AND HAZARD-BASED DURATION MODEL FOR PREDICTING URBAN FREEWAY TRAFFIC ACCIDENT DURATIONS 
	Traffic incidents account for more than 50% of motorist delays on freeways (Farradyne, 2000; Chin et al., 2004). To reduce the societal cost of such incidents, an efficient traffic incident management system (TIM) need be developed and deployed. The TIM process can be viewed as consisting of 5 phases (Zhan et al., 2011): (1) incident detection, which refers to the time interval from the occurrence of the incident to its detection; (2) incident verification that covers the period from the detection to the co
	 
	A critical component of effective TIM involves the ability to predict the likely incident duration under various conditions. Based on the predicted duration, authorities can allocate incident response personnel and resources more effectively, inform travelers about traffic conditions more accurately, and decide upon the appropriate response strategy.  
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	Figure 8. Traffic incident management process and accident duration definition 
	 
	This study proposes a new traffic accident duration prediction model which combines a decision tree model, namely the M5P tree model, and a statistical hazard-based duration model (HBDM). The proposed model will hereafter be referred to as the M5P-HBDM. As will be discussed in more detail later, M5P-HBDM offers the advantage of minimizing data heterogeneity through dataset classification, while simultaneously avoiding the need for imposing restrictive assumptions regarding the distribution of traffic accide
	 
	The organization of this third major section of the report is as follows.  The section begins with a review of previous research on incident duration prediction models and approaches to deal with heterogeneity in traffic accident data.  Next, the basic methodologies of M5P tree and HBDM are introduced, and the proposed algorithm to build the M5P-HBDM is described.  The two traffic accident datasets used in this research are then presented, and three different incident duration models are constructed for eac
	 
	PREVIOUS RESEARCH ON INCIDENT DURATION PREDICTION 
	Traffic Accident Duration Analysis 
	Given the enormous societal cost of traffic accidents, the transportation research community has always been interested in models and methodologies for predicting the likelihood of traffic accidents, the factors behind their occurrences, and their likely durations. In terms of accident duration analysis, the methods proposed in the literature can be grouped into the following categories: (1) statistical methods; and (2) Artificial Intelligence (AI)-based methods. 
	 
	For statistical methods, previous research has examined the candidate probability distributions that fit traffic accident durations. Golob et al. (1987) analyzed truck-involved incident durations in California, and reported that the durations of the incidents, categorized by the type of collisions, followed a log-normal distribution. On the other hand, Ozbay and Kachroo (1999) identity a normal distribution of incident durations for homogeneous incidents grouped by incident type and severity.  
	 
	In terms of statistical methods, regression models have been applied in the past to predict traffic accident durations and identify the contributing factors. For example, Giuliano (1989) assigned incidents into multiple categories and, for each category, estimated a model for predicting incident durations using linear regression techniques. Garib et al. (1997) also developed a polynomial regression model to predict incident durations. Their results showed that, in terms of adjusted R-square, 81% of the vari
	 
	Besides regression, Nam and Mannering (2000) built hazard-based duration models to evaluate incident durations, based on a two-year dataset from the state of Washington. They mentioned that, compared to regression approaches, hazard-based duration models have the advantage of allowing the explicit study of duration effects (i.e., the relationship between how long an incident has lasted and the likelihood of it ending soon). Recently, Alkaabi et al. (2011) and Chung (2010) also developed hazard-based duratio
	 
	For AI-based methods, decision trees were used in previous research to predict incident durations (He et al., 2013; Ozbay et al., 1999; Smith and Smith, 2001). The main advantage of decision trees is that they require no assumption regarding the probability distribution of the incident duration data (Alkaabi et al., 2011). On the negative side, however, Ozbay and Noyan (2006) pointed out that the decision trees can sometimes become unstable and insensitive to the stochastic nature of the data. Many other AI
	 
	Data Heterogeneity 
	The heterogeneity inherent in traffic accident data often prevents their further exploration (Savolainen et al., 2011). In the presence of data heterogeneity, the patterns/distributions observed at the population level may be surprisingly different from the underlying patterns at the individual level (Vaupel and Yashin, 1985). In other words, the aggregated behavior of a heterogeneous population, composed of two or more homogeneous but differently behaving subpopulations, will differ from the behavior of an
	 
	To deal with the issue, random effects and random parameters models have been proposed for traffic accident data analysis (Karlaftis and Tarko, 1998; Miaou et al., 2003; Anastasopoulos and Mannering, 2009). Such models capture the unobserved heterogeneity by using random error terms, and allow each estimated parameter of the model to vary across each individual observation in the dataset (Lord and Mannering, 2010). This can prevent the problems of inconsistent coefficient estimates and inferences (Nam and M
	 
	Clustering and classifying the traffic accident data is another way to minimize the heterogeneity problem. One way to classify traffic incidents is based on incident type (Golob et al., 1987; Giuliano, 1989; Ozbay and Kachroo, 1999).  In addition, some researchers recently classified traffic crash data based on factors such as visibility conditions (i.e., daylight, twilight and night conditions (Hong et al., 2014)). A few other clustering methods, including latent class clustering (Depaire et al., 2008), k-
	 
	METHODOLOGY  
	As previously mentioned, this study proposes a new traffic accident duration prediction model M5P-HBDM based on the decision tree model M5P tree and the statistical model HBDM. 
	Traditional decision trees were originally proposed by Breiman et al. (1984).  These trees, however, have fixed average values at their leaves that cannot model the stochastic nature of the parent-child relationship in a realistic way (Ozbay and Noyan, 2006). Considering this, Quinlan (1992) developed a new type of a tree named the M5 tree which can have multivariate linear models at its leaves; with this, more flexible predictions are allowed. In order to handle enumerated attributes and attribute with mis
	 
	The M5P tree has been applied by Zhan et al. (2011) to predict lane clearance time of freeway incidents. One problem with the M5P tree is that given that linear regression Y=βX+ε is used to build the tree’s leaves, the residuals ε have to be assumed to be normally distributed.  This means that the conditional distribution of accident clearance time Y, given the explanatory variables X, has to be assumed to follow a normal distribution as well. However, the distribution for time to an event (here it is the t
	 
	HBDM, on the other hand, is a statistical model used to analyze the duration of a specific event. The model allows different distributions of the duration to be assumed (e.g., Weibull distribution, log-normal distribution, log-logistic distribution and so on). The HBDM has been previously applied to analyze and predict incident duration, but on an unclassified dataset (Nam and Mannering, 2000; Chung, 2010; Alkaabi et al., 2011). To the best of the authors’ knowledge, previous research did not attempt to com
	 
	The proposed M5P-HBDM retains the superior ability of the M5P tree at classifying traffic accident datasets, but replaces the linear regression models typical of the M5P algorithm with HBDMs, which in turn allows for using the probability distribution that best fits the data.  The following section will introduce M5P tree and HBDM first, followed by a detailed description of the proposed the M5P-HBDM and the algorithm developed to construct the model. 
	 
	M5P Tree Algorithm  
	The M5P tree algorithm mainly includes two steps (Quinlan, 1992; Wang and Witten, 1997): the tree growth step and the tree pruning step. Assume there is a collection of 𝑇𝑛 training cases at node 𝑛 (𝑛=0 for the root node), and assume that each case has a fixed set of attributes, either discrete (binary or categorical) or continuous (e.g., visibility), and has a target value (i.e., the traffic accident duration). Before tree construction, all categorical attributes need to be transformed into binary varia
	 
	In the tree growth step, the algorithm firstly calculates the standard deviation 𝑠𝑑(𝑇𝑛) of the target values of the cases in 𝑇𝑛.  Assuming that there is a test tree that splits 𝑇𝑛 into O outcomes 
	(=2 for a binary split), the objective function is to find the potential test tree that maximizes the reduction in the standard deviation, calculated according to 
	(=2 for a binary split), the objective function is to find the potential test tree that maximizes the reduction in the standard deviation, calculated according to 
	Equation 14
	Equation 14

	 

	 
	 ∆𝒔𝒅=𝒔𝒅(𝑻𝒏)−∑|𝑻𝒊𝒏||𝑻𝒏|×𝒔𝒅(𝑻𝒊𝒏)𝑶𝒊=𝟏  
	Equation 14 
	 
	Where 𝑇𝑖𝑛 denote the subset of cases that have the ith outcome of the potential test, 𝑠𝑑(𝑇𝑖𝑛) denote the standard deviation of the target values of cases in 𝑇𝑖𝑛, |𝑇𝑖𝑛| denote the number of cases in 𝑇𝑖𝑛, and |𝑇𝑛| is the number of cases in 𝑇𝑛. ∑|𝑇𝑖𝑛||𝑇𝑛|×𝑠𝑑(𝑇𝑖𝑛)𝑂𝑖=1 is the weighted average standard deviation after the split.  
	 
	The same process is applied recursively to the subsets, until the subsets at a node either contain only a small number of instances/cases, or their target values show very small variations from one another. This means that there are two termination thresholds for the algorithm: the first is 𝑇𝐻1, which refers to the minimum number of cases allowed at a node, and the second is 𝑇𝐻2, which is used to check whether the standard deviation of the target values at the node is less than 𝑇𝐻2∗𝑠𝑑(𝑇0). The node
	 
	In the tree pruning step, starting near the bottom of the tree, the algorithm examines each non-leaf node of the model to determine whether this node should be replaced with the linear model developed above, as a new leaf node, or whether the subtree should be kept intact. The decision is made based upon which approach (i.e., the linear model or the sub-tree) would yield the lower estimated error.  The estimated error of the linear model is calculated using 
	In the tree pruning step, starting near the bottom of the tree, the algorithm examines each non-leaf node of the model to determine whether this node should be replaced with the linear model developed above, as a new leaf node, or whether the subtree should be kept intact. The decision is made based upon which approach (i.e., the linear model or the sub-tree) would yield the lower estimated error.  The estimated error of the linear model is calculated using 
	Equation 15
	Equation 15

	: 

	 
	 𝑬𝒓𝒓𝒐𝒓=𝑵+𝒗𝑵−𝒗∗∑𝒂𝒃𝒔(𝑽𝒂𝒄𝒕−𝑽𝒑𝒓𝒆)𝑵𝒊=𝟏𝑵     
	Equation 15 
	 
	As can be seen, the estimated error is the average absolute difference between the actual target values 𝑉𝑎𝑐𝑡 of the training cases and the predicted values, 𝑉𝑝𝑟𝑒.  This is given by the linear model at the current node (or the average target value for the leaf node), and adjusted by (𝑁+𝑣)/(𝑁−𝑣), where 𝑁 is the number of training cases going through this current node, and 𝑣 is the number of the parameters in the linear model. For the estimated error of the sub-tree alternative, the error from ea
	  
	 Hazard-based Duration Model  
	Suppose the duration of a specific traffic accident is represented by a continuous random variable 𝐷 with a cumulative probability distribution function, 𝐹(𝑑).   𝐹(𝑑) represents the probability that duration 𝐷 is less than a time value 𝑑, and is called the failure function in HBDM.  It is defined as shown in 
	Suppose the duration of a specific traffic accident is represented by a continuous random variable 𝐷 with a cumulative probability distribution function, 𝐹(𝑑).   𝐹(𝑑) represents the probability that duration 𝐷 is less than a time value 𝑑, and is called the failure function in HBDM.  It is defined as shown in 
	Equation 16
	Equation 16

	: 

	 𝐹(𝑑)=∫𝑓(𝑢)𝑑𝑢𝑑0=P(𝐷<𝑑),0<𝑑<∞  
	Equation 16 
	The corresponding probability density function is thus given as: 
	 𝑓(𝑑)=𝛿𝐹(𝑑)𝛿𝑑=𝑙𝑖𝑚∆𝑑→0𝑃(𝑑≤𝐷<𝑑+∆𝑑)∆𝑑 
	 Equation 17 
	 
	where 𝑓(𝑑) describes the instantaneous failure rate in the infinitesimally small interval [d,d+∆d].  Also given F(d), the survival function, 𝑆(𝑑), is defined as in 
	where 𝑓(𝑑) describes the instantaneous failure rate in the infinitesimally small interval [d,d+∆d].  Also given F(d), the survival function, 𝑆(𝑑), is defined as in 
	Equation 18
	Equation 18

	 

	 𝑆(𝑑)=1−𝐹(𝑑)=𝑃(𝐷≥𝑑)  
	Equation 18 
	where 𝑆(𝑑) denotes the probability that the duration 𝐷 is longer than time value 𝑑. 
	At last, with the probability density function 𝑓(𝑑) and the survival function 𝑆(𝑑) known, the hazard function ℎ(𝑑) is defined in 
	At last, with the probability density function 𝑓(𝑑) and the survival function 𝑆(𝑑) known, the hazard function ℎ(𝑑) is defined in 
	Equation 19
	Equation 19

	 as follows: 

	 ℎ(𝑑)=𝑓(𝑑)𝑆(𝑑)=lim∆𝑑→0𝑃(𝑑≤𝐷≤𝑑+∆𝑑|𝐷≥𝑑)∆𝑑  
	Equation 19 
	where ℎ(𝑑) can be interpreted as the instantaneous failure rate at time 𝑑, given that the duration has lasted at least 𝑑 minutes.  
	 
	The accelerated failure time model (AFT) is a main approach to investigate the effects of explanatory variables on accident durations using HBDMs (Alkaabi et al., 2011; Chung, 2010).  AFT assumes a distribution for  
	 𝜏=𝑒𝑥𝑝 (−𝑥𝑖𝛽)∗𝑑𝑖  
	Equation 20 
	 
	where 𝜏 may have a specified distribution like the Weibull distribution, the Log-normal distribution, or the Log-logistic distribution, 𝑑𝑖 is the duration of case 𝑖, 𝑥𝑖 is its value vector of explanatory variables, and  𝛽 is the vector of estimated coefficients. After taking the logarithm for both sides, the AFT model can be framed as a linear model as shown in 
	where 𝜏 may have a specified distribution like the Weibull distribution, the Log-normal distribution, or the Log-logistic distribution, 𝑑𝑖 is the duration of case 𝑖, 𝑥𝑖 is its value vector of explanatory variables, and  𝛽 is the vector of estimated coefficients. After taking the logarithm for both sides, the AFT model can be framed as a linear model as shown in 
	Equation 21
	Equation 21

	: 𝒍𝒏(𝒅𝒊)=𝒙𝒊𝜷+𝒍𝒏 (𝝉) 

	Equation 21 
	 
	where 𝑙𝑛(𝑑𝑖) is the natural logarithm of the survival time. With the parameters in 𝛽 and 𝜏  estimated, for  a new observation, the mean or median of the failure time distribution can be calculated and used as the prediction for the accident duration (Cleves et al., 2008). 
	 
	M5P-HBDM Model 
	This section will describe the process of building the proposed M5P-HBDM and how it is designed to take advantage of the strengths of each of the M5P and HBDM methods, described above; appendix A shows the pseudo-codes of the M5P-HBDM algorithm, and compares it with the original M5P algorithm described in Wang and Witten (1997).   As can be seen from appendix A, the building process of the M5P-HBDM model is very similar to that for the M5P model in that the two main steps of tree growth and tree pruning are
	 
	First, in the split step for tree growth, when the stop criteria are met and the node is marked as a leave node, the original M5P tree algorithm uses the average of the target values for that leave node.  In the HBDM-M5P algorithm, on the other hand, the algorithm proceeds to build a HBDM model using the training cases at that leave node. If the prediction performance of the HBDM model is better than the constant average value, we use the HBDM model as the model of the leave node.  
	 
	Second, in the pruning step where a model needs to be built for each interior/non-leaf node, the original M5P tree algorithm (Wang and Witten, 1997) builds a linear regression model for the current node, using only the variables that are referenced by the subtree.  The algorithm then greedily drops the variables, if doing so decreases the prediction errors calculated using equation (2). This means that the linear regression models in the original M5P algorithm do not consider problems such as whether the va
	 
	Third, in the proposed M5P-HBDM, the model of the node can consist only of the constant value calculated by taking the average or the median of the target values (which will thus constitute the predicted value of the traffic accident duration).  It can also be a HBDM, where the predictions of the target values would be the mean or median value of the AFT with a selected distribution shown in 
	Third, in the proposed M5P-HBDM, the model of the node can consist only of the constant value calculated by taking the average or the median of the target values (which will thus constitute the predicted value of the traffic accident duration).  It can also be a HBDM, where the predictions of the target values would be the mean or median value of the AFT with a selected distribution shown in 
	Equation 20
	Equation 20

	. This is different from the prediction calculation using the constant average value or the linear regression models in the original M5P tree algorithm, as will be explained in more detail later.  

	 
	MODELING DATASETS  
	 
	Virginia Traffic Accident Dataset  
	The Virginia dataset included traffic accident records reported in 2005 and 2006 on a segment of interstate highway I-64 in Norfolk, Virginia. The accidents were monitored and recorded by Virginia Department of Transportation (VDOT’s) Archived Data Management System (ADMS). For this study, 602 accident records were selected; for each record, 17 variables are used to describe the accident. These variables are summarized in 
	The Virginia dataset included traffic accident records reported in 2005 and 2006 on a segment of interstate highway I-64 in Norfolk, Virginia. The accidents were monitored and recorded by Virginia Department of Transportation (VDOT’s) Archived Data Management System (ADMS). For this study, 602 accident records were selected; for each record, 17 variables are used to describe the accident. These variables are summarized in 
	Table 10
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	Table 10. Traffic accident variables in I-64 dataset 
	 
	Table
	TBody
	TR
	Span
	Variables  
	Variables  

	Values 
	Values 


	TR
	Span
	Season  
	Season  

	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 
	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 


	TR
	Span
	Weekday 
	Weekday 

	Yes (Monday 2 AM-Friday 9 PM, except holidays); No 
	Yes (Monday 2 AM-Friday 9 PM, except holidays); No 


	TR
	Span
	Hour of the day  
	Hour of the day  

	Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  
	Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  


	TR
	Span
	Weather conditions  
	Weather conditions  

	Clear; Rain; Snow 
	Clear; Rain; Snow 


	TR
	Span
	Direction 
	Direction 

	East Bound; West Bound 
	East Bound; West Bound 


	TR
	Span
	Location code 
	Location code 

	1; 2; 3; 4; 5; 6; 7; 8 ;9 (the codes mean different detectors) 
	1; 2; 3; 4; 5; 6; 7; 8 ;9 (the codes mean different detectors) 


	TR
	Span
	Lane number at main road 
	Lane number at main road 

	2; 3; 4 
	2; 3; 4 


	TR
	Span
	Road structure 
	Road structure 

	Ramp; Highway 
	Ramp; Highway 


	TR
	Span
	Detection source 
	Detection source 

	CCTV; FIRT; Phone Call; SSP; TMS Camera; VSP CAD; VSP Radio; Other 
	CCTV; FIRT; Phone Call; SSP; TMS Camera; VSP CAD; VSP Radio; Other 


	TR
	Span
	Accident Type 
	Accident Type 

	Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 
	Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 


	TR
	Span
	Moving to shoulder 
	Moving to shoulder 

	Yes; No 
	Yes; No 


	TR
	Span
	Fire  
	Fire  

	Yes; No 
	Yes; No 


	TR
	Span
	Roll over 
	Roll over 

	Yes; No 
	Yes; No 


	TR
	Span
	Number of vehicles involved 
	Number of vehicles involved 

	1; 2; greater than 2 
	1; 2; greater than 2 


	TR
	Span
	Blocked lanes 
	Blocked lanes 

	0; 1; 2; 3; 4 
	0; 1; 2; 3; 4 


	TR
	Span
	Injured number 
	Injured number 

	0, 1, … 
	0, 1, … 


	TR
	Span
	Duration 
	Duration 

	0, 1, … 
	0, 1, … 




	 
	As can be seen, there are: (a) three temporal variables in the dataset (season, weekday and hour of the day); (b) one environmental variable (weather conditions); (c) four geographic or spatial variables (direction, location code, lane number at main road, and road structure); and (d) nine accident outcome variables (detection source, accident type, moving to shoulder, fire, roll over, number of vehicles involved, blocked lanes, injured number and duration).  
	 
	Among the traffic accident relevant variables, the “location code”, which takes on values from “1” to “9”, refers to the nearest traffic detector code (there are nine detectors in this segment of I-64) to the accident location. “Detection source” is included to investigate whether the accident reporting way has any impact on accident duration.  “Accident type” is included, since the type of the accident naturally affects the manner followed to remove the accident, and the equipment used, which in turn may a
	 
	 
	    
	Buffalo-Niagara Traffic Accident Dataset 
	This dataset included 616 traffic accidents observed on I-190 from 01/01/2008 to 10/31/2012. Incidents and traffic flow information are monitored and recorded by the Niagara International Transportation Technology Coalition (NITTEC), which serves as the region’s Traffic Operations Center (TOC). Incident details are recorded every day through detailed incident log forms, which formed the basis for compiling the dataset used in this study. 
	This dataset included 616 traffic accidents observed on I-190 from 01/01/2008 to 10/31/2012. Incidents and traffic flow information are monitored and recorded by the Niagara International Transportation Technology Coalition (NITTEC), which serves as the region’s Traffic Operations Center (TOC). Incident details are recorded every day through detailed incident log forms, which formed the basis for compiling the dataset used in this study. 
	Table 11
	Table 11

	summarizes the variables included in the Buffalo-Niagara dataset. 

	 
	Table 11. Traffic accident variables in I-190 dataset 
	Table
	TBody
	TR
	Span
	Variables  
	Variables  

	Values 
	Values 


	TR
	Span
	Season  
	Season  

	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 
	Spring (March, April, May); Summer (June, July, August); Autumn (September, October, November); Winter (December, January, February) 


	TR
	Span
	Weekday 
	Weekday 

	Yes (Monday 2 AM-Friday 9 PM, except holidays); No 
	Yes (Monday 2 AM-Friday 9 PM, except holidays); No 


	TR
	Span
	Hour of the day  
	Hour of the day  

	Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  
	Morning (7 AM-9 AM); Early afternoon (10 AM-12 Noon); Afternoon (1 PM-3 PM); Evening rush (4 PM-6 PM); Evening (7 PM-9 PM); Night (10 PM-6 AM)  


	TR
	Span
	Visibility 
	Visibility 

	0-10 
	0-10 


	TR
	Span
	Wind speed 
	Wind speed 

	0 mph (miles per hour), …,  
	0 mph (miles per hour), …,  


	TR
	Span
	Weather conditions  
	Weather conditions  

	Clear; Rain; Snow 
	Clear; Rain; Snow 


	TR
	Span
	Direction 
	Direction 

	North Bound; South Bound 
	North Bound; South Bound 


	TR
	Span
	Location code 
	Location code 

	1; 2; …; 24; 25; 26 (the codes represent different exits at I-190) 
	1; 2; …; 24; 25; 26 (the codes represent different exits at I-190) 


	TR
	Span
	Lane number at  main road 
	Lane number at  main road 

	2; 3; >=3 
	2; 3; >=3 


	TR
	Span
	Lane number at  ramp 
	Lane number at  ramp 

	0 (away from exit); 1; 2 
	0 (away from exit); 1; 2 


	TR
	Span
	Ramp type 
	Ramp type 

	On ramp; off ramp; highway to highway on ramp; highway to highway off ramp 
	On ramp; off ramp; highway to highway on ramp; highway to highway off ramp 


	TR
	Span
	Ramp layout 
	Ramp layout 

	On ramp, off ramp; off ramp, on ramp; only off ramp; only on ramp 
	On ramp, off ramp; off ramp, on ramp; only off ramp; only on ramp 


	TR
	Span
	Road structure 
	Road structure 

	Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before the bridge; after the bridge 
	Before the exit; at the exit; beyond the exit; highway; ramp; bridge; before the bridge; after the bridge 


	TR
	Span
	Accident Type 
	Accident Type 

	Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 
	Car; Wrong Way; Truck/Tractor trailer; Motorcycle; car to facility; Others 


	TR
	Span
	Blocked lane  
	Blocked lane  

	N/A at main road; Left lane at main road; middle lane at main road; right lane at main road; left two at main road; right two at main road; left and right lanes at main road; all lanes at main road; N/A at ramp; left lane at ramp; right lane at ramp; all lanes at ramp 
	N/A at main road; Left lane at main road; middle lane at main road; right lane at main road; left two at main road; right two at main road; left and right lanes at main road; all lanes at main road; N/A at ramp; left lane at ramp; right lane at ramp; all lanes at ramp 


	TR
	Span
	Blocked lanes number at main road 
	Blocked lanes number at main road 

	0; 1; 2; 3 
	0; 1; 2; 3 


	TR
	Span
	Blocked lanes number at ramp 
	Blocked lanes number at ramp 

	0; 1; 2 
	0; 1; 2 


	TR
	Span
	Injured  
	Injured  

	Yes; No 
	Yes; No 


	TR
	Span
	Roll over 
	Roll over 

	Yes; No 
	Yes; No 


	TR
	Span
	Congestion 
	Congestion 

	Yes; No 
	Yes; No 




	Table
	TBody
	TR
	Span
	Fire 
	Fire 

	Yes; No 
	Yes; No 


	TR
	Span
	Number of vehicles involved 
	Number of vehicles involved 

	1; 2; greater than 2 
	1; 2; greater than 2 


	TR
	Span
	Duration 
	Duration 

	0, 1, … 
	0, 1, … 




	 
	In this dataset, there are 23 variables in total for each accident record. The three temporal variables are the same as those in the I-64 dataset: season, weekday and hour of the day. There are: (a) three environmental variables: visibility, wind speed and weather conditions; (b) seven geographic or spatial variables: direction, location code, lane number on main road, lane number on ramp, ramp type, ramp layout and road structure; and (c) ten accident outcome variables: accident type, block lane index, blo
	 
	The “Location code” variable in this dataset can range from “1” to “26”, and refers, in this case, to the ID of the nearest exit from the accident location. For example, “1” means the accident is closest to Exit 1 on I-190. “Ramp type” can be one of the following: (1) a “highway to highway on ramp”; or (2) “highway to highway off ramp”, since I-190 is connected to other two highways “I-290” and “I-90”. If the ramp is from the other highway to I-190, we classify the ramp as “highway to highway on ramp”. “Ram
	 
	Comparing the two datasets, we can see that the records have different emphasis on traffic accidents characteristics. The I-64 accident dataset records detailed information about moving the vehicles to the shoulder and the detection source. In contrast, the I-190 accident dataset includes information such as on which lane the accident occurred, whether the accident happened on the mainline or on the ramp, among other attributes.  
	   
	MODEL DEVELOPMENT 
	 
	As mentioned before, the I-64 dataset included 602 traffic accident records and the I-190 dataset included 616 traffic accident records. For each dataset, the first 500 records were used for model training, and the remainder data points for testing. For each dataset, three different models are developed: (1) a stand-alone M5P tree; (2) a stand-alone HBDM; and (3) the proposed combined M5P-HBDM.  
	 
	M5P Tree 
	In this study, a Matlab package called M5PrimeLab (Jekabsons, 2010) was used for the M5P tree model development. To build the tree, the modeler needs first to decide upon the values of the two thresholds, namely: (1) the minimum number of training records at one node 𝑇𝐻1; and (2) the ratio of the standard deviation 𝑇𝐻2, previously mentioned.    
	 
	Although the value of 𝑇𝐻1 can be set as low as 2, it is generally not desirable for a non-lead node to have too few records, in order to allow for building good linear regression models after 
	the tree growth step. In this study, we experimented with 𝑇𝐻1 values ranging from 5% to 10% of the total number of training cases (i.e., values between 25 and 50). After some experimentation, 𝑇𝐻1 was set to 30, and 𝑇𝐻2 was set to 0.95. 
	the tree growth step. In this study, we experimented with 𝑇𝐻1 values ranging from 5% to 10% of the total number of training cases (i.e., values between 25 and 50). After some experimentation, 𝑇𝐻1 was set to 30, and 𝑇𝐻2 was set to 0.95. 
	Figure 1
	Figure 1

	Figure 9
	 shows the resulting M5P tree model for the I-64 dataset. 
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	Figure 9. M5P tree model for I-64 training dataset. 
	 
	As can be seen in 
	As can be seen in 
	Figure 9
	Figure 9

	., for some leaf nodes, there are a constant value and a number in the parenthesis.  The constant value is the average of the accident durations (in minutes) for the cases in that node, and the number in parenthesis is the number of those cases. There are also two linear models in two leaf nodes, LM1 and LM2. In the tree pruning step, these two models replaced the original sub trees (enclosed by the red rectangles in 
	Figure 9
	Figure 9

	.). The details of LM1 and LM2 are listed below. 

	LM1: Duration=62.46 minutes (103 cases); 
	LM2: Duration=52.49 minutes (209 cases); 
	 
	As can be seen, the two linear regression models developed here are basically two constants. As discussed before, after building a linear regression model for an interior node, the M5P algorithm uses a greedy search to remove variables that do not improve the predictions for the cases going through that node.  In our case, the algorithm ended up removing all variables, and the linear models ended up with just the constant. The number in the parentheses refers to the number of training cases at that leaf.  
	 
	Insight into the factors affecting accident duration can be gained from studying the developed tree.  First from the splitting rule at the root node, it can be seen that if the vehicles involved were moved to the shoulder once the accident happened, the average accident duration was only 37 minutes. On the other hand, if the vehicles were not moved to shoulder, the duration was significantly longer.  Specifically, with the vehicles not moved to the shoulder and with someone injured, the accident duration wa
	  
	Similarly, an M5P tree was developed for the Buffalo-Niagara I-190 accident dataset.  After experimentation as before, 𝑇𝐻1 was set to 35, and 𝑇𝐻2 to 0.75. 
	Similarly, an M5P tree was developed for the Buffalo-Niagara I-190 accident dataset.  After experimentation as before, 𝑇𝐻1 was set to 35, and 𝑇𝐻2 to 0.75. 
	Figure 10
	Figure 10

	 shows the M5P tree model that resulted.  
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	Figure
	Figure 10. M5P tree model for I-190 training dataset. 
	 
	We can see that this is an extreme situation for the algorithm, when the whole grown M5P tree is replaced by one linear regression model LM1 in the tree pruning step (shown below).  
	 
	LM1: Duration=37.95+6.92*Hour of the day= Morning (7 AM-9 AM) or Early afternoon (10 AM-12 Noon) or Evening rush (4 PM-6 PM)? (500 cases); 
	 
	The developed LM1 shows that the estimated duration of an accident is at least 37.95 minutes, and that there is only one independent variable, which is the “hour of the day”.  If the hour is one of the following time intervals, the morning (7 AM-9 AM) period, or early afternoon (10 AM-12 Noon) or evening rush (4 PM-6 PM)” hour, the duration will be increased by 6.92 minutes. 
	 
	In conclusion, it can be seen that while the tree pruning step of the original M5P is designed to allow for the use of the linear regression model when it can bring the lower estimated error, that step has resulted, for both the Virginia and Buffalo datasets utilized in this study, in models with very weak explanatory power (i.e., few independent variables).   
	 
	 
	 
	Hazard-based Duration Model 
	Before applying HBDM models, there are two issues that need to be addressed.  First, a probability distribution form needs to be specified for 𝜏 in 
	Before applying HBDM models, there are two issues that need to be addressed.  First, a probability distribution form needs to be specified for 𝜏 in 
	Equation 20
	Equation 20

	. Secondly, the significant explanatory variables 𝑥𝑖 need to be determined. In this study, we followed the four-step procedure outlined, aided by STATA software, to develop the HBDM (Collett, 2003; Alkaabi et al., 2011). 

	1. Fit models using exponential, Weibull, Log-normal, Log-logistic and Generalized Gamma models with no explanatory variables. Record the log likelihood for each model.  
	2. For each model, add the explanatory variables from the candidate variable list, one by one, test the new model, and select the one which increased the log likelihood the most. 
	3. For each model, repeat step 2 by adding one additional variable from the remainder of the candidate variables.  Stop when no variable can increase the log likelihood.  
	4. For each model, calculate the value of the Akaike information criterion (AIC), which can be calculated as shown in below (Alkaabi et al., 2011; Cleves et al., 2008): 
	 𝐴𝐼𝐶=−2𝑙𝑛𝐿+2(𝑘+𝑐) 
	Equation 22 
	 
	Where 𝐿 is the likelihood, 𝑘 is the number of model covariates, and c is the number of model-specific distributional parameters. Finally select the model with the lowest value of AIC as the HBDM model.  
	 
	The AIC values of the HBDMs developed for the I-64 and I-190 datasets are listed in 
	The AIC values of the HBDMs developed for the I-64 and I-190 datasets are listed in 
	Table 12
	Table 12

	 .  As can be seen, for both the I-64 and the I-190 datasets, the HBDM model with the log-normal distribution had the lowest AIC, and hence this was the model employed to analyze the accident duration in this study. It is to be noted that this is consistent with other studies reported in the literature (Golob et al., 1987; Chung, 2010).  

	 
	Table 12. AIC values of HBDMs for I-64 and I-190 training datasets 
	 
	Table
	TBody
	TR
	Span
	Model  
	Model  

	I-64 dataset 
	I-64 dataset 

	I-190 dataset 
	I-190 dataset 


	TR
	Span
	-2lnL 
	-2lnL 

	k 
	k 

	c 
	c 

	AIC 
	AIC 

	-2lnL 
	-2lnL 

	k 
	k 

	C 
	C 

	AIC 
	AIC 


	TR
	Span
	Exponential  
	Exponential  

	1169.42 
	1169.42 

	9 
	9 

	1 
	1 

	1179.42 
	1179.42 

	1223.04 
	1223.04 

	2 
	2 

	1 
	1 

	1226.04 
	1226.04 


	TR
	Span
	Weibull 
	Weibull 

	952.92 
	952.92 

	9 
	9 

	2 
	2 

	963.92 
	963.92 

	1105.78 
	1105.78 

	9 
	9 

	2 
	2 

	1116.78 
	1116.78 


	TR
	Span
	Log-normal 
	Log-normal 

	949.08 
	949.08 

	6 
	6 

	2 
	2 

	957.08 
	957.08 

	1107.72 
	1107.72 

	3 
	3 

	2 
	2 

	1112.72 
	1112.72 


	TR
	Span
	Log-logistic 
	Log-logistic 

	954.62 
	954.62 

	8 
	8 

	2 
	2 

	964.62 
	964.62 

	1186.34 
	1186.34 

	9 
	9 

	2 
	2 

	1197.34 
	1197.34 


	TR
	Span
	Generalized gamma 
	Generalized gamma 

	957.24 
	957.24 

	5 
	5 

	3 
	3 

	965.24 
	965.24 

	1185.3 
	1185.3 

	9 
	9 

	3 
	3 

	1197.3 
	1197.3 




	 
	For the log-normal regression AFT model, 𝜏 is distributed as log-normal with parameters (𝛽0,𝜎). The log-normal AFT function can thus be expressed as in 
	For the log-normal regression AFT model, 𝜏 is distributed as log-normal with parameters (𝛽0,𝜎). The log-normal AFT function can thus be expressed as in 
	Equation 23
	Equation 23

	 below (Cleves et al., 2008): 

	 𝑙𝑛(𝑑𝑖)=𝛽0+𝑥𝑖𝛽+𝜇  
	Equation 23 
	    where 𝜇 follows a normal distribution with mean 0 and standard deviation 𝜎. 
	For the I-64 dataset, 
	For the I-64 dataset, 
	Table 13
	Table 13

	 shows the estimated coefficients of the explanatory variables, the standard error, the P-value, and percentage change (%) for the log-normal AFT model. The percentage change represents the change in the duration of the incident resulting from a one unit change in the value of the variable under consideration.  

	 
	Table 13. Log-normal AFT models on I-64 training dataset 
	Table
	TBody
	TR
	Span
	Variable  
	Variable  

	Coefficient 
	Coefficient 

	Standard Error 
	Standard Error 

	P value 
	P value 

	Percentage Change (%) 
	Percentage Change (%) 


	TR
	Span
	Night 
	Night 

	0.19 
	0.19 

	0.07 
	0.07 

	0.016 
	0.016 

	21% 
	21% 


	TR
	Span
	Move to shoulder? 
	Move to shoulder? 

	-0.36 
	-0.36 

	0.07 
	0.07 

	0.000 
	0.000 

	-30% 
	-30% 


	TR
	Span
	Road structure 
	Road structure 

	0.26 
	0.26 

	0.10 
	0.10 

	0.017 
	0.017 

	30% 
	30% 


	TR
	Span
	Injured Number 
	Injured Number 

	0.22 
	0.22 

	0.04 
	0.04 

	0.000 
	0.000 

	25% 
	25% 


	TR
	Span
	Detection=7 (VSP Radio) 
	Detection=7 (VSP Radio) 

	-0.16 
	-0.16 

	0.08 
	0.08 

	0.025 
	0.025 

	-15% 
	-15% 


	TR
	Span
	Roll over 
	Roll over 

	0.51 
	0.51 

	0.25 
	0.25 

	0.041 
	0.041 

	67% 
	67% 


	TR
	Span
	𝛽0 
	𝛽0 

	3.41 
	3.41 

	0.11 
	0.11 

	0 
	0 

	 
	 


	TR
	Span
	𝜎 
	𝜎 

	0.62 
	0.62 

	0.02 
	0.02 

	 
	 

	 
	 




	 
	Similarly, 
	Similarly, 
	Table 14
	Table 14

	 lists the coefficients of the significant independent variables, along with the corresponding standard error, P-value, and percentage change (%), for the log-normal AFT model of the I-190 training dataset (i.e., the Buffalo-Niagara dataset).  

	 
	Table 14. Log-normal AFT models on I-190 training dataset 
	Table
	TBody
	TR
	Span
	Variable  
	Variable  

	Coefficient 
	Coefficient 

	Standard Error 
	Standard Error 

	P value 
	P value 

	Percentage Change (%) 
	Percentage Change (%) 


	TR
	Span
	Afternoon (1 PM-3 PM) 
	Afternoon (1 PM-3 PM) 

	-0.16 
	-0.16 

	0.10 
	0.10 

	0.007 
	0.007 

	-15% 
	-15% 


	TR
	Span
	Roll Over? 
	Roll Over? 

	0.83 
	0.83 

	0.26 
	0.26 

	0.001 
	0.001 

	129% 
	129% 


	TR
	Span
	Vehicle number 
	Vehicle number 

	0.21 
	0.21 

	0.10 
	0.10 

	0.050 
	0.050 

	23% 
	23% 


	TR
	Span
	𝛽0 
	𝛽0 

	3.06 
	3.06 

	0.20 
	0.20 

	0 
	0 

	 
	 


	TR
	Span
	𝜎 
	𝜎 

	0.75 
	0.75 

	0.02 
	0.02 

	 
	 

	 
	 




	 
	As can be seen, the only variable with negative percentage change (%) is the variable “Afternoon” (1 PM-3PM), which shows that if the accident were to happen during this time interval, the duration would be 15% shorter, most probably because of lighter traffic during that time period. Also similar to the results for the I-64 training dataset, the rolling over of the involved vehicles can lead to a dramatic increase in the accident duration (in this case of about 129%).    
	 
	M5P-HBDM model 
	Now with the stand-alone M5P and HBDM models developed for the two datasets, the study proceeded to construct the new M5P-HBDM proposed herein, following the procedure previously described.  
	Now with the stand-alone M5P and HBDM models developed for the two datasets, the study proceeded to construct the new M5P-HBDM proposed herein, following the procedure previously described.  
	Figure 11
	Figure 11

	 shows the M5P-HBDM built for the I-64 or the Virginia training dataset.  
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	Figure 11. M5P-HBDM model for I-64 training dataset. 
	 
	The M5P-HBDM model ended up having only one splitting rule, namely “moving to shoulder?”. The AIC test shows the log-normal distribution is still the best assumption for the accelerated failure time functions of HBDM1 and HBDM2. 
	The M5P-HBDM model ended up having only one splitting rule, namely “moving to shoulder?”. The AIC test shows the log-normal distribution is still the best assumption for the accelerated failure time functions of HBDM1 and HBDM2. 
	Table 15
	Table 15

	 shows the relevant parameters for the two models.  

	 
	Table 15.  Log-normal AFT models in M5P-HBDM of I-64 training dataset 
	Table
	TBody
	TR
	Span
	Branches 
	Branches 

	Variable  
	Variable  

	Coefficient 
	Coefficient 

	Standard Error 
	Standard Error 

	P value 
	P value 

	Percentage Change (%) 
	Percentage Change (%) 


	TR
	Span
	HBDM1 
	HBDM1 
	(96 cases) 

	𝛽0 
	𝛽0 

	3.36 
	3.36 

	0.08 
	0.08 

	0 
	0 

	 
	 


	TR
	Span
	𝜎 
	𝜎 

	0.74 
	0.74 

	0.05 
	0.05 

	 
	 

	 
	 


	TR
	Span
	HBDM2 
	HBDM2 
	(404 cases) 

	Night 
	Night 

	0.14 
	0.14 

	0.07 
	0.07 

	0.06 
	0.06 

	15% 
	15% 


	TR
	Span
	Blocked lane number 
	Blocked lane number 

	0.06 
	0.06 

	0.04 
	0.04 

	0.007 
	0.007 

	6% 
	6% 


	TR
	Span
	Road structure 
	Road structure 

	0.27 
	0.27 

	0.10 
	0.10 

	0.005 
	0.005 

	31% 
	31% 


	TR
	Span
	Injured Number 
	Injured Number 

	0.18 
	0.18 

	0.05 
	0.05 

	0.000 
	0.000 

	20% 
	20% 


	TR
	Span
	Detection= 5 (TMS Camera)? 
	Detection= 5 (TMS Camera)? 

	0.06 
	0.06 

	0.07 
	0.07 

	0.007 
	0.007 

	6% 
	6% 


	TR
	Span
	Detection= 7 (VSP Radio)? 
	Detection= 7 (VSP Radio)? 

	-0.13 
	-0.13 

	0.09 
	0.09 

	0.008 
	0.008 

	-12% 
	-12% 


	TR
	Span
	Roll over? 
	Roll over? 

	0.54 
	0.54 

	0.27 
	0.27 

	0.05 
	0.05 

	72% 
	72% 


	TR
	Span
	Fire or not? 
	Fire or not? 

	0.11 
	0.11 

	0.09 
	0.09 

	0.02 
	0.02 

	12% 
	12% 


	TR
	Span
	𝛽0 
	𝛽0 

	3.31 
	3.31 

	0.12 
	0.12 

	0 
	0 

	 
	 


	TR
	Span
	𝜎 
	𝜎 

	0.60 
	0.60 

	0.02 
	0.02 

	 
	 

	 
	 




	 
	As can be seen, for the log-normal AFT model HBDM1, no significant variables are found; only the constant 𝛽0 and the sigma in the log-normal distribution are estimated. For the HBDM2, a few additional observations, beyond the insight made possible from the stand-alone HBDM.  First, the “blocked lane number” variable shows that one more lane being blocked can increase the accident duration by 6%. Second, the detection source “detection=5” (TMS camera) demonstrates that the accidents detected by camera have 
	Similarly, the M5P-HBDM of I-190 dataset is shown in 
	Similarly, the M5P-HBDM of I-190 dataset is shown in 
	Figure 12. M5P-HBDM model for I-190 training dataset.
	Figure 12. M5P-HBDM model for I-190 training dataset.
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	Figure 12. M5P-HBDM model for I-190 training dataset. 
	 
	For both HBDM1 and HBDM2, the AIC test still shows that the log-normal distribution appears to be the best assumption for the AFT functions. The relevant parameters of HBDM1 and HBDM2 are shown in 
	For both HBDM1 and HBDM2, the AIC test still shows that the log-normal distribution appears to be the best assumption for the AFT functions. The relevant parameters of HBDM1 and HBDM2 are shown in 
	Table 16
	Table 16

	.  

	 
	Table 16. Log-normal AFT models in M5P-HBDM of I-190 training dataset 
	Table
	TBody
	TR
	Span
	Branches 
	Branches 

	Variable  
	Variable  

	Coefficient 
	Coefficient 

	Standard Error 
	Standard Error 

	P value 
	P value 

	Percentage Change (%) 
	Percentage Change (%) 


	TR
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	From 
	From 
	Table 16
	Table 16

	, we can see that for HBDM1 based on the cases when the accidents happen away from the ramps, the accident duration is increased by 55% if the accident were to occur during the evening rush period (4 PM-6 PM).  This makes sense since it is definitely harder to clear an incident during heavy traffic.  Regarding the HBDM2 based on the 360 cases, the results show, for example, that accidents happening at Exit 16 (I-190/I-290 Interchange) have significantly longer durations than those occurring elsewhere (40% l
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	Table 17. Significant variables in M5P, HBDM and M5P-HBDM of I-64 training dataset 
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	Table 17
	Table 17
	Table 17

	 lists all the significant variables identified by each of the M5P, HBDM and M5P-HBDM models, for the I-64 training dataset (the sign in the parenthesis indicates the impact of that variable in terms of increasing or decreasing accident duration. The symbol “R” indicates that the variable resulted in a splitting rule for the model, as a part of the M5P algorithm.  

	 
	As can be seen from 
	As can be seen from 
	Table 17
	Table 17

	, the M5P model helped identify only three significant independent variables affecting accident duration.  HBDM, on the other hand, identified six significant variables, whereas eight significant variables and one splitting rule were identified by the M5P-HBDM model. Two significant variables “moving to shoulder?” and “injured number” were identified by all the three models.   

	 
	Similarly, the significant independent variables identified by the M5P, HBDM and M5P-HBDM models for the I-190 training dataset are summarized in 
	Similarly, the significant independent variables identified by the M5P, HBDM and M5P-HBDM models for the I-190 training dataset are summarized in 
	Table 18
	Table 18

	. As can be seen, the number of significant variables identified by M5P-HBDM far exceeds those identified by either the stand-alone M5P or the stand-alone HBDM.  
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	Accident Duration Prediction Comparison 
	The prediction accuracy of the three models was compared, using a test set not previously utilized in model development.  For prediction performance evaluation, the Mean Absolute Percentage Error (MAPE), a widely used measure to assess the accuracy of models developed, was utilized.  MAPE can be calculated as follows: MAPE=1𝑛∑|𝐴𝑖−𝑃𝑖𝐴𝑖|𝑛𝑖=1 
	Equation 24 
	where 𝐴𝑖 is the ith actual value, 𝑃𝑖 is the ith predicted value.  
	 
	To calculate the predictions, for the M5P tree model, each testing record will be directed toward the corresponding leaf, and the linear functions, or the mean target values at that leaf, are used to estimate the accident duration. For HBDMs, the mean and the median values of the survival time (accident duration) for the log-normal AFT models are calculated and used for prediction (the study calculated both the median and the mean values to see which approach yielded better predictive accuracy).  For M5P-HB
	 
	Table 19
	Table 19
	Table 19

	 shows the MAPEs of the M5P tree model, HBDM model and the M5P-HBDM model for the two testing datasets.  The column labelled “HBDM (median)” lists the HBDM’s MAPE resulting from using the median values of the survival times, whereas the column entitled “HBDM (mean)” lists the model’s MAPE resulting from using the mean values.  The same is true for the columns entitled M5P-HBDM (median) and M5P-HBDM (mean) in connection with the M5P-HBDM.  

	  
	Table 19.  MAPEs of M5P tree, HBDM model and M5P-HBDM model 
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	Firstly, as can be seen, our experiments in this study seem to indicate that the use of the median values of the survival time results in better prediction performance compared to the mean values for both HBDMs and M5P-HBDMs. Secondly, for the I-64 testing dataset, the lowest MAPE was 36.20% given by the M5P-HBDM (median), followed by the HBDM (median) with an MAPE of 38.32%.  The MAPE of the M5P model is the highest (i.e., 48.69%). For I-190 testing dataset, the M5P-HBDM (median) still had the best predict
	 
	CONCLUSIONS AND FUTURE WORK  
	This study has proposed a novel approach for accident duration prediction, which constructs a M5P-HBDM model in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Two traffic accident duration datasets were then used to construct and evaluate the performance of three modeling approaches, a stand-alone M5P tree, a stand-alone HBDM, and the proposed M5P-HBDM model. Among the main conclusions of the study with respect to the proposed new algorithm are:  
	 
	1. Thanks to the tree growth step of the M5P algorithm, the proposed M5P-HBDM is able to reduce data heterogeneity through the splitting rules at the nodes. With this, the new algorithm is able to identify more factors as significantly affecting incident duration.  
	2. Because M5P-HBDM can build an AFT model as its leaf, and since the AFT model does not need to assume that the conditional distribution of traffic accident durations, given the independent variables, follows the normal distribution (as was the case with the linear regression model in M5P model), the analyst is free to experiment with other distributions such as the Weibull distribution, the log-normal distribution, the log-logistics. In this study, we found that the log-normal AFT model appeared to be the
	3. The comparison of the prediction performances of the three models shows that, for both testing data sets, the M5P-HBDM based on the median value of the survival time for the log-normal AFT model always had the lowest overall MAPE.  
	 
	For future research, one possible idea to investigate, involves combining the M5P tree algorithm with a random parameter HBDM.  This may further improve accident duration prediction, by allowing the coefficients of the variables in the model to vary across each individual observation in the dataset. Another possible idea is to test the transferability of M5P-HBDM by building a unique model for two or more datasets. 
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